
Isogeny School 2021
Week 8: Quantum Claw-Finding

Sam Jaques

August 30, 2021

1 Isogenies as Claw Finding

Problem 1.1 (Claw-finding). Let f : X → S and g : Y → S be two
functions. Find x ∈ X and y ∈ Y such that f(x) = g(y), if it exists.

To connect this to isogenies, we imagine two curves E0 and E1 where
there is a secret isogeny φ : E0 → E1 of degree `e. We let X be the set of
all isogenies φi : E0 → Ei of degree `e/2 and Y be the set of all isogenies
φj : E1 → Ej of degree `e/2. The functions f and g will take an isogeny as
input and output the j-invariant of the image curve (so the set S is the set
of all possible j-invariants). A claw (x, y) implies a single curve E01 and two
isogenies φx : E0 → E01 and φy : E1 → E01. From this, we can compute

φ̂y ◦ φx : E0 → E1, an isogeny of degree `e.
For SIDH, |X| = `e/2 ≈ p1/4. There are approximately p/12 supersingular

isogeny classes, up to isomorphism, so |S| ≈ p/12. There are (`+ 1)`e/2−1 ≈
`e/2 ≈ p1/4 isogenies of degree `e/2 from E0 (and the same from E1). This
means |X| = |Y | � |S|, which implies the claw is very likely to be unique.

From this point on, we will focus on the claw-finding problem, and three
“families” of attack: Grover search, quantum walks, and Multi-Grover. It’s
important to remember this claw-finding perspective throws aways almost
all of the rich structure of the isogenies. So far, algebraic quantum attacks
either do not apply to SIDH parameters (see torsion-point attacks) or their
performance is the same or worse than generic attacks (e.g., [4]).

1

S

X

Y

f(X)

g(Y)

f

g

Claws!

Figure 1: The claw-finding problem.

Type Variant Specialty
Tiny-Claw[5] Lowest “depth-width” cost*

Grover Parallel Tiny-claw[2] Offsets a lot of
the query cost

Random Walk[9] Tani[10] Lowest number of queries*
Distinguished Points[7] Lowest gate cost*

Multi-Grover[3] Distinguished Points[7] Best parallelism

Table 1: Overview of state-of-the-art quantum claw-finding algorithms. Un-
der reasonable limits on total runtime, all of them perform worse than clas-
sical van Oorschot-Wiener, even without accounting for the overheads of
quantum computing. * indicates that the claim only holds with no runtime
limit.

2 Grover’s Search

We can apply Grover’s algorithm directly to claw-finding. The search space
is all pairs (x, y) ∈ X×Y . If we assume there is exactly one claw, we require
O(
√
|X||Y |) iterations. For SIDH, this is O(p1/4).

To parallelize generically, we cannot do better than dividing the search
space: With P quantum machines, we partition the search space into P
subsets and each machine searches one subset. This means each machine

needs O(
√
|X||Y |
P

) iterations. Adding up the cost over all machines, the total

cost is P times this value, or O(
√
|X||Y |P). This means the total cost

increases with the amount of parallelism.
Exercise: If each iteration takes 1 unit of time, find the cost to complete

a Grover search in a fixed time T (as a function of |X|, |Y |, and T).

2

3 Quantum Random Walks

3.1 Classical Meet-in-the-middle

The following classical attack is not the most efficient, but it will be analogous
to a quantum walk.

Choose a memory parameter R. Construct a list Lx of random elements
(x, f(x)) and a list Ly of elements (y, g(y)) such that |Lx| = |Ly| = R. Sort
it and check for any claws. Then, until a claw is found, repeat:

• Delete a random element of Lx. Choose a new random element of X,
compute (x, f(x)), then (a) check if f(x) = g(y) for any y ∈ Ly; (b)
insert (x, f(x)) into Lx. Repeat with the roles of X and Y switched.

We split the cost into set-up, update, and check costs. The set-up, to
initially construct the lists, will be O(R logR) if we ignore the costs to evalute
f and g and give cost O(1) to access memory. The update, to delete an
element and insert a new one, is O(logR). The check, to look for f(x) = g(y),
is O(logR) as well.

This algorithm detects a claw (x, y) if x ∈ Lx and y ∈ Ly at any point.
The probability of this for a random set will be R

|X|
R
|Y | . However, the proba-

bility of the claw being in Lx × Ly after replacing only one element in each
is highly correlated to the probability before the replacement. Therefore, we
expect to need to repeat about R replacements before both lists look “fresh”
and we have the desired probability of containing the claw.

Together, this gives a total cost (in runtime) of

O

R logR︸ ︷︷ ︸
:=S

+
|X||Y |
R2︸ ︷︷ ︸
:=1/ε

R︸︷︷︸
:=1/δ

logR︸ ︷︷ ︸
:=U

+ logR︸ ︷︷ ︸
:=C

 (1)

Optimizing gives R ≈ |X|, for a total cost of Õ(|X|). For SIDH, this
means p1/4+o(1) – but it requires p1/4+o(1) bits of memory as well.

Exercise: Suppose there are T pairs of claws (x1, y1), . . . , (xT , yT), with
T � R� |X| = |Y |, such that f(xi) = f(xj) for i 6= j. What is the runtime
of the previously-described algorithm to find any claw?

3

Lx
x f(x)

HP 15
On 32
bU 45
rG 53
Lr 54
nz 61
Nl 70
gx 73
sl 87
od 89

Ly
y f(y)

oM 18
Vi 31
il 33

Aa 47
HI 55
uk 75
AY 78
QO 82
Lq 88
XQ 91

Add:
x =Ug
y =VM

Delete:
x =On
y =AY

Lx
x f(x)

Ug 9
HP 15
bU 45
rG 53
Lr 54
nz 61
Nl 70
gx 73
sl 87
od 89

Ly
y f(y)

oM 18
Vi 31
il 33

VM 36
Aa 47
HI 55
uk 75
QO 82
Lq 88
XQ 91

Figure 2: A single random iteration. The list on the left has no claw and it
is easy to check after each addition/deletion that the new elements do not
create one.

3.2 Quantum Walk

We can re-frame the previous algorithm as a random walk on a graph1. The
vertices of the graph will be the pairs of lists Lx and Ly. We want each
edge to represent replacing an element from each list, so there will be an
edge between (Lx, Ly) and (L′x, L

′
y) if and only if both Lx and L′x each differ

by exactly one element, and Ly and L′y also differ by exactly one element.
We say a vertex is marked if there is some x ∈ Lx and y ∈ Ly such that
f(x) = g(y) (i.e. (x, y) is a claw).

There is a quantum algorithm, analogous to Grover’s algorithm, which
performs a search for marked vertices on a graph [9]. It is almost identical to
the classical algorithm of the last section, except instead of a random step,
it takes a superposition of steps. Instead of checking for marked vertices, it
adds a phase of −1 to any marked vertices. The complexity is

O

(
S +

1√
ε

(
1√
δ
U + C

))
(2)

where all the terms are defined in Equation 1. The ε and δ terms have a

1It will be a product of two Johnson graphs. The exact definition of a Johnson graph
is unimportant here.

4

quadratic speed-up, which you should think of as the same as the quadratic
speed-up of Grover’s algorithm.

The algorithm requires us to implement the classical steps in a quantum
computer. Generically this is possible at the same cost, with some caveats.

4

2 5

1 3

(a) A binary tree.

Memory address Data Pointer to left child Pointer to right child
0x01 4 0x02 0x05
0x02 2 0x03 0x04
0x03 1 null null
0x04 3 null null
0x05 5 null null

Memory address Data Pointer to left child Pointer to right child
0x01 4 0x03 0x02
0x02 5 null null
0x03 2 0x04 0x05
0x04 1 null null
0x05 3 null null

(b) Two equivalent memory layouts for the binary tree. An algorithm to build a
binary tree might insert new data at the next free slot in allocated memory and
arrange pointers from there. This means if the data was inserted in the order
(4, 2, 1, 3, 5) it would produce the first layout and (4, 5, 2, 1, 3) would produce the
second.

Figure 3: The same data structure, with equivalent but not identical repre-
sentations of the data in memory.

The quantum random walk (like all quantum algorithms) requires inter-
ference between states. The quantum state of a pair of lists (Lx, Ly) will
be a ket vector |Lx〉 |Ly〉, which specifies the precise memory layout of the
lists. This must always be exactly the same for interference to occur. In
particular, this means the memory layout must not depend on how the list
was constructed. This is called “history independence”.

5

To store a sorted list for fast insertion and deletion, good classical choices
are a binary tree or a hash table. Neither works directly for a quantum com-
puter, because they are history dependent (see Figure 3). Two approaches
to solve this are to create a superposition over all possible layouts [1, 8], or
use a fixed layout, so the elements must be re-sorted with every insertion or
deletion [6].

Exercise: Show that if we set R = 1, the graph as defined at the start
of this section is a complete graph, and that the cost of a quantum random
walk on this complete graph is the same as Grover’s algorithm.

3.3 Quantum Cost Models

The quantum algorithm repeatedly accesses memory, so we must understand
the costs of quantum memory2. Quantum circuits are often described in
the same way as classical circuits, with wires between quantum gates. In a
classical circuit, a gate is an object (a set of transistors) through which a
signal can propagate at some time and energy cost. In contrast, a “gate” in
a quantum computer today is an action performed on a static qubit (e.g.: a
laser pulse fired at a small ring of superconducting metal). This action will
be controlled by a classical computer, and hence incurs some cost in time,
energy, and classical computation.

This matters for memory access. Classically, a carefully-constructed bi-
nary tree of switches can access N words of memory and only send a signal
through O(lgN) gates. However, the entire circuit needs Θ(N) gates. For a
quantum computer, this means a cost (energy, and/or classical control cost)
of Θ(N) for each memory access. Moreover, a quantum computer must apply
every gate, since the memory access may be in superposition, and in a vague
sense, it must access all words of memory in one request.

In short, a sensible and conservative model of the cost of a quantum com-
puter is the number of total gates, not the time to perform the computation.
Under this model, the update cost in the quantum random walk is Θ(R). In
fact, re-sorting the list is one of the cheapest options. This leads to a total
cost of

O

(
R +

√
|X||Y |√
R

(R + 1)

)
(3)

2This section follows [6].

6

This increases at all values of R, implying the optimal choice is R = 1:
Grover’s algorithm3.

Exercise: The action of memory access maps an index i and a list L to
L[i]. Show that a classical circuit requires Ω(|L|) gates to do this, if the
individual gates have at most 2 inputs.

4 Multi-Grover

Quantum walks do not parallelize well. Instead, the Multi-Grover algo-
rithm uses a Grover search over lists of R pairs of elements (x, y) ∈ X×Y [3].
To check whether a list contains a claw, we use R quantum processors. Each
is given one pair (x, y) from the list. The processors act as a sorting network
and look for any claws. The cost of this depends on the physical layout of
the processors; for now, assume it costs O(R logR) gates and time O(logR).

The probability of selecting the claw out of R processors is approximately
R2

|X||Y | (as long as R� |X|), so the number of grover iterations is the square
root of this. Then the total cost is:

O

 √
|X||Y |
R︸ ︷︷ ︸

number of iterations

· R logR︸ ︷︷ ︸
cost of each iteration

 = O
(√
|X||Y | logR

)
(4)

This is approximately the same cost as Grover’s algorithm; however the total
runtime is lower by a factor of R. Hence, this parallelizes the attack.

Exercise: In a 2-dimensional grid, a sorting network costs O(R3/2) and
runs in time O(R1/2) to sort. Calculate the total cost and run-time of the
Multi-Grover algorithm in 2-dimensions. How well does it parallelize?

References

[1] A. Ambainis, Quantum walk algorithm for element distinctness, SIAM
J. Computing 37 (2007), 210–239.

[2] Reza Azarderakhsh, Jean-Franois Biasse, Rami El Khatib, Brandon
Langenberg, and Benjamin Pring, Parallelism strategies for the tuneable

3We ignored oracle costs; the quantum walk can help offset oracle costs.

7

golden-claw finding problem, International Journal of Computer Mathe-
matics: Computer Systems Theory 0 (2021), no. 0, 1–27.

[3] Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel
Kutin, Noah Linden, Dan Shepherd, and Mark Stather, Efficient dis-
tributed quantum computing, Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 469 (2013), no. 2153,
20120686.

[4] Jean-François Biasse, David Jao, and Anirudh Sankar, A quantum al-
gorithm for computing isogenies between supersingular elliptic curves,
Progress in Cryptology – INDOCRYPT 2014 (Cham) (Willi Meier and
Debdeep Mukhopadhyay, eds.), Springer International Publishing, 2014,
pp. 428–442.

[5] Jean-François Biasse and Benjamin Pring, A framework for reducing the
overhead of the quantum oracle for use with grover’s algorithm with ap-
plications to cryptanalysis of SIKE, Journal of Mathematical Cryptology
15 (2020), no. 1, 143–156.

[6] S. Jaques and J. M. Schanck, Quantum cryptanalysis in the RAM
model: Claw-finding attacks on SIKE, CRYPTO 2019, LNCS 11693,
2019, pp. 32–61.

[7] Samuel Jaques and André Schrottenloher, Low-gate quantum golden col-
lision finding, Selected Areas in Cryptography (Cham) (Orr Dunkelman,
Michael J. Jacobson, Jr., and Colin O’Flynn, eds.), Springer Interna-
tional Publishing, 2021, pp. 329–359.

[8] S. Jeffery, Frameworks for quantum algorithms, Ph.D. thesis, University
of Waterloo, Waterloo, Ontario, Canada, 2014.

[9] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha,
Search via quantum walk, SIAM Journal on Computing 40 (2011), no. 1,
142–164.

[10] S. Tani, An improved claw finding algorithm using quantum walk, Math-
ematical Foundations of Computer Science – MFCS 2007, LNCS 4708,
pp. 548–558.

8

	Isogenies as Claw Finding
	Grover's Search
	Quantum Random Walks
	Classical Meet-in-the-middle
	Quantum Walk
	Quantum Cost Models

	Multi-Grover

