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Abstract. These notes, written for the Isogeny-based Cryptography
School (2021), cover implementation aspects of supersingular isogeny-
based protocols, with special focus on SIDH and SIKE. The techniques
and algorithms presented here are, for example, used in the SIDH li-
brary [13]. The document also includes a discussion of the cryptanalysis
and parameter selection for SIKE.

1 Introduction

The computational layers that make up supersingular isogeny key-exchange pro-
tocols can be visualized in Fig. 1. In these notes, we will focus on the algorithmic
and implementation aspects that correspond to the layers below the protocol
level. We start by describing the curve and isogeny arithmetic.

2 Curve and isogeny arithmetic

For efficiency and compactness purposes, supersingular isogeny-based protocols
are most commonly instantiated using Montgomery curves, which we describe
next closely following [5].

2.1 Montgomery curves and their arithmetic

A Montgomery curve [14] over a finite field Fq with char(Fq) 6= 2 is defined by
the equation

E(a,b) : by2 = x3 + ax2 + x,

where (a, b) ∈ A2(Fq), a2 6= 4 and b 6= 0. For practical instantiations of supersin-
gular isogeny-based schemes, it is more efficient to work fully in the projective
space for both the curve points and the curve coefficients, as proposed by Costello
et al. [5]. In this case, the Montgomery curve equation can be re-written as

E(A:B:C) : By2 = Cx3 +Ax2 + Cx,

where (A : B : C) ∈ P2(Fq) with C ∈ F̄q
×

is such that a = A/C and b = B/C.
The notation (X : Y : Z) ∈ P2(K) with Z 6= 0 represents all the points (x, y) =
(X/Z, Y/Z) in A2(Fq), and the point at infinity is O = (0 : 1 : 0).
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Fig. 1: Computational layers of supersingular isogeny key-exchange protocols.

Kummer varieties and points in P1. To enable fast and compact implemen-
tations one can work with the Kummer varieties of Montgomery curves defined
by E(A:B:C)/〈±1〉. In this case, points are mapped to P1 using

χ : E(A:B:C) \ {O} → P1, (X : Y : Z) 7→ (X : Z), O 7→ {1, 0}.

We write χ(P ) = (X : Z) to represent a point in the Kummer variety.

Let P,Q be points in E(A:B:C) \ {O}. We define the doubling function xDBL :
(χ(P ), A,C) 7→ χ([2]P ), the differential addition function xADD : (χ(P ), χ(Q),
χ(Q−P )) 7→ χ(Q+P ), and the function xDBLADD : (χ(P ), χ(Q), χ(Q−P ), A,C) 7→
(χ([2]P ), χ(Q − P )) that merges the first two1. These functions are all that is
needed for the realization of the so-called Montgomery ladder, which computes
the function LADDER : (χ(P ), A,C,m) 7→ χ([m]P ). In supersingular isogeny-
based protocols, one also makes use of two additional functions: the Montgomery
tripling function xTPL : (χ(P ), a) 7→ χ([3]P ), and the “three-point ladder” func-
tion LADDER 3 pt : (χ(P ), χ(Q), χ(Q − P ), A,C,m) 7→ χ(P + [m]Q), which is
applied to the computation of the kernels [7].

Note that the xADD function for E(A : B : C) is identical to the original formula
for E(a,b) due to Montgomery [14]. Other functions on E(a,b) that involve the
Montgomery coefficient a can be easily modified to work on E(A : B : C) by substi-
tuting a = A/C and then carrying the denominator C through to the projective
output to avoid the associated inversion [5]. This optimization takes advantage
of the fact that an elliptic curve and its non-trivial quadratic twist under the
quotient by 〈±1〉 share the same Kummer variety and, hence, their arithmetic
is independent of the Montgomery coefficient b (or B).

1 We note that the differential addition fails for Q− P ∈ {O, (0, 0)}.
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Algorithm 1 Montgomery “three-point ladder” function LADDER 3 pt :
(χ(P ), χ(Q), χ(Q− P ), A, C,m) 7→ χ(P + [m]Q).

Require: m = (mt−1, . . . ,m0)2 ∈ Z, (xP , xQ, xQ−P ), and (A : 1).
Ensure: χ(P + [m]Q) = (XP+[m]Q : ZP+[m]Q)

1: χ(R0) = (xQ : 1), χ(R1) = (xP : 1), χ(R2) = (xQ−P : 1)
2: for i = 0, . . . , t− 1 do
3: if mi = 0 then
4: (χ(R0), χ(R2))← xDBLADD(χ(R0), χ(R2), χ(R1), A, 1)
5: else
6: (χ(R0), χ(R1))← xDBLADD(χ(R0), χ(R1), χ(R2), A, 1)

7: return χ(R1)

2.2 Computation of the large-, smooth-degree isogenies

Let E be a starting, public curve2, and P,Q be two points of order r lying on E.
For the computation of a large-degree `e-isogeny, we need to compute a kernel
point with the form [k]P + [l]Q, for k, l ∈ Zr, and its corresponding isogeny
φ : E → E/〈[k]P + [l]Q〉. Typically, the final goal is to compute the image curve
E/〈[k]P + [l]Q〉, but in some cases we also need to evaluate φ at some points of
E.

Kernel computation P +[m]Q. De Feo et al. [7] observed that any generator
of 〈[k]P + [l]Q〉 suffices to compute the required isogenies. If we assume k is
invertible modulo r, then the kernel point simplifies to P + [lk−1]Q, which is
equivalent to directly using P + [m]Q for some m ∈ Zr.

Computing P+[m]Q can be done efficiently using one xDBLADD function (i.e.,
one doubling and one differential addition) per each bit of the scalar m, as shown
in Algorithm 1. This algorithm, proposed by Faz-Hernández et al. [9], improves
over the three-point ladder algorithm originally proposed to implement SIDH
which required one doubling and two differential additions per scalar bit [7].
Note that Algorithm 1 assumes that both P and Q vary at each call3. When the
points are fixed4, it is possible to do better by storing the intermediate values
corresponding to R0, i.e., the points [2i]Q. If we store the full t multiples, the
cost of computing P + [m]Q reduces to one differential addition per bit of the
scalar, injecting a roughly 2x speedup (see [9, Alg. 3]).

Isogeny computation and evaluation. The large-degree `e-isogeny compu-
tation can be visualized as traversing a tree, from top to bottom, doing point
multiplications by ` and `-isogeny computations which are guided by a so-called

2 E.g., in SIDH, E can be the fixed, starting curve of the protocol, or the curve that
is part of Alice’s or Bob’s public key.

3 E.g., this fits the case in the SIDH protocol in which the points P and Q are passed
to the other party as part of a public key.

4 E.g., this fits the case in the key generation stage of SIDH.
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optimal strategy. This optimal strategy is derived by using the relative cost of a
point multiplication by ` and an `-isogeny evaluation. Since the topic of optimal
strategies has already been covered in the school (Week 5: “Advanced SIDH
Protocols”), we skip it here and refer the reader to [7, §4.2.2] and [3, §1.3.8] for
more details.

Recall that ` ∈ {2, 3} for key-exchange protocols like SIDH and SIKE. The
atomic isogeny operations that are required for these schemes are degree-4 and
degree-3 isogenies (it turns out that computing degree-4 isogenies is much faster
than using degree-2 isogenies). We describe the formulas for the 4-isogenies be-
low.

Projective degree-4 isogenies. Let χ(P ) = (X4 : Z4) ∈ P1 be such that
P has order 4 in E(A:C). Let E′(A′:C′) = E(A:C)/〈P 〉, φ : E(A:C) → E′(A′:C′),

and Q ∈ Ea \ ker(φ). A first formula is derived to compute the isogenous curve
E(A′ : C′) from E(A : C) and (X4 : Z4):

(A′ : C ′) =
(

2(2X4
4 − Z4

4 ) : Z4
4

)
. (1)

An improved version of formula (1) replaces (A′ : C ′) with the coefficients (A′+
2C ′ : 4C ′) throughout the full isogeny computation. In this case, we simply have

(A′ + 2C ′ : 4C ′) =
(

4X4
4 : 4Z4

4

)
, (2)

This optimization is used, for example, in the SIDH and SIKE implementations
in the SIDH library [13].

A second formula is used to evaluate the isogeny by computing χ(φ(Q)) =
(X ′ : Z ′) ∈ P1 from the additional input χ(Q) = (X : Z) ∈ P1:

(X ′ : Z ′) =
(
c2(X − Z) + c1(X + Z)

)2(
c0(X + Z)(X − Z)+(

c2(X − Z) + c1(X + Z)
)2)

:(
c2(X − Z)− c1(X + Z)

)2((
c2(X − Z) + c1(X + Z)

)2
− c0(X + Z)(X − Z)

)
, (3)

where c = [ c0, c1, c2 ] = [Z2
4 , X4 − Z4, X4 + Z4 ] are values that are stored and

re-used from eq. (2), taking advantage of the fact that each 4-isogeny is typically
evaluated at multiple points.

The computation of eq. (2) and of the three values in c above costs 4S+5A5,
and on input of c and χ(Q) = (X : Z), the computation of eq. (3) costs 6M +
2S + 6A.

5 We represent the costs of multiplications, squarings, and additions (or subtractions)
in Fp2 as M, S and A, respectively.



Supersingular Isogeny-Based Cryptography: Implementation and Parameters 5

Problem 1. Let χ(P ) = (x3, y3) ∈ A2 be such that P has order 3 in E(a,c). Let
E′(a′,c′) = E(a,c)/〈P 〉, φ : E(a,c) → E′(a′,c′), and Q ∈ Ea \ ker(φ). The isogeny

evaluation χ(φ(Q)) = (x′, y′) ∈ A2 from the additional input χ(Q) = (x, y) ∈ A2

is done via the formula:

(x′, y′) =

x
(
x− 1

x3

)2
(x− x3)2

x23 :
y
(
x− 1

x3

)((
x− 1

x3

)
(x− x3) + 2x

(
1
x3
− x3

))
(x− x3)3

x23

 .

Derive the respective projective degree-3 isogeny evaluation formula for com-
puting χ(φ(Q)) = (X ′ : Z ′) ∈ P1 with the input χ(Q) = (X : Z) ∈ P1, where
x = X/Z and y = Y/Z. Minimize the number of multiplications and squarings
that are required, and write the final operation count.

3 Modular arithmetic

In this section, we describe efficient algorithms for computation over a quadratic
extension field Fp2 . We restrict the description to the most common setup for
SIDH and SIKE, that is, we assume that p ≡ 3 mod 4 and fix Fp2 = Fp(i) for
i2 + 1 = 0, where p = 2e2 · 3e3 − 1.

3.1 Karatsuba multiplication meets lazy reduction

The Fp2 construction above allows us to leverage the extensive research done in
the efficient implementation of such quadratic extension fields. In the context of
pairings, high-speed implementations have exploited a combination of Karatsuba
multiplication, lazy reduction and carry-handling elimination; e.g., see [2] for the
implementation details of the multiplication over Fp2 used by the BN254 pairing.
In particular, lazy reduction and carry-handling elimination are facilitated by
using a prime with a bitlength that is slightly smaller than a multiple of a word
size. If p is selected such that l = dlog2 pe < N , where N = n ·w, n = dl/we, and
w is the computer wordsize, then several consecutive integer additions without
modular correction and without carry-out in the most significant word (MSW)
can be performed before a multiplication with the form c = a · b, as long as the
result c is guaranteed to be less than 2N · p (assuming the use of Montgomery
reduction). Moreover, if the results of some integer multiplications (i.e., before
reduction) are sufficiently smaller than 2N · p, then lazy reduction could be ap-
plied and several consecutive double-precision additions without carry-outs in
the MSW (and, in some cases, subtractions without borrow-outs in the MSW)
can be performed before the Montgomery reduction. The algorithm for multipli-
cation in Fp2 combining all these optimizations is shown in Algorithm 2. Integer
operations without modular correction or reduction are represented as ×,+ or
−. The only operation that requires a modular correction is the subtraction on
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line 4 that is represented as 	. Double-precision operands are represented in
uppercase, while single-precision operands are in lowercase.

The SIKE primes [3] submitted to the NIST PQC process [16] were selected
as to facilitate the techniques above. For example, the SIKE prime chosen for
the NIST security level 1 is p434 = 2216 · 3137 − 1. On a 32- and 64-bit platform,
this prime has an extra room of 448− log2 p434 = 14 bits.

Algorithm 2 Multiplication in Fp2 using Karatsuba and lazy reduction

Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2

Output: c = a · b = (c0 + c1i) ∈ Fp2

1: T0 ← a0 × b0, T1 ← a1 × b1, t0 ← a0 + a1, t1 ← b0 + b1
2: T2 ← t0 × t1, T3 ← T0 + T1

3: T2 ← T2 − T3

4: T0 ← T0 	 T1

5: c0 ← T2 mod p
6: c1 ← T0 mod p
7: return C = (c0 + c1i)

3.2 Specialized modular reduction

Supersingular isogeny-based schemes have modular arithmetic at their core and,
hence, their cost is dominated by the modular multiplication computations. A
well-known method to implement this operation is due to Montgomery [15]. Let
R = 2N and p′ = −p−1 mod R, where again N = n · w, n = dl/we, l = dlog2 pe
and w is the computer wordsize. Then, the Montgomery residue c = aR−1 mod p
for an input a < pR, can be computed as

c = (a+ (ap′ mod 2N ) · p)/2N , (4)

which costs approximately (n2 + n) w-bit multiplications for a 2n-limb value a.
Interestingly, the special shape of SIDH and SIKE primes is amenable for op-

timized versions of the so-called Montgomery reduction, as first noted by Costello
et al. [5]. For a prime with the form p = 2e2 · 3e3 − 1, the computation above
simplifies to

c =
(
a+ (ap′ mod 2N ) · 2e2 · 3e3 − (ap′ mod 2N )

)
/2N

= b
(
a+ (ap′ mod 2N · 2e2 · 3e3

)
/2Nc. (5)

In addition, since p′ = −p−1 mod 2N also has a special form the cost of
computing ap′ mod 2N can be simplified further (e.g., p′ − 1 for p751 = 2372 ·
3239−1 contains five 64-bit limbs or eleven 32-bit limbs of value 0). In total, the
cost of computing c reduces to n(n−be2/wc) w-bit multiplications. For example,
if w = 64 (i.e., n = 12 for p751), the theoretical speedup of the simplified modular
reduction over p751 is about 1.86x.
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Eliminating the Montgomery conditional subtraction. The result of a
Montgomery reduction is upper bounded by 2p when its input is in the range
[0, pR). Hence, a conditional subtraction is needed to bring the result to [0, p).
However, this operation can be avoided if we perform arithmetic over a redundant
representation (e.g., over Z2p). For example, if operands are kept in the range
[0, 2p) such that the result of a multiplication is guaranteed to be c = a · b <
4p2 ≤ pR (i.e., it should hold that R ≥ 4p), then the result of the Montgomery
reduction is still going to be bounded by 2p but we will no longer require the
modular correction. A simple correction is going to be required at the very end
of the computations to bring the final result to the canonical range [0, p).

Note that this optimization complements quite nicely the previous techniques
discussed in this section. This makes sense since avoiding the Montgomery con-
ditional subtraction is just a variant of the approach of avoiding modular cor-
rections in other parts of the arithmetic.

Algorithms 3 and 4 are specialized variants of multiplication and squaring
(resp.) in Fp2 that take advantage of the use of redundant representations, as
described above. Note that Algorithm 3 also exploits the form of the SIDH/SIKE
primes to use a slightly faster subtraction with conditional correction at lines 4–
6. Also note that Algorithm 4 includes a subtraction with unconditional addition
at line 1 that guarantees that inputs fed to the multipliers have a positive value.

Algorithm 3 Specialized multiplication in Fp2 with redundant representation.

Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 . Input coefficients are allowed to be in
the range [0, 2p). N = n · w, n = dl/we, l = dlog2 pe and w is the computer wordsize.
Output: c = a · b = (c0 + c1i) ∈ Fp2 . Output coefficients are allowed to be in the range
[0, 2p).

1: T0 ← a0 × b0, T1 ← a1 × b1, t0 ← a0 + a1, t1 ← b0 + b1
2: T2 ← t0 × t1, T3 ← T0 + T1

3: T2 ← T2 − T3

4: T0 ← T0 − T1

5: if T0 < 0 then
6: T0 ← T0 + p · 2N

7: c0 ← T2 mod p
8: c1 ← T0 mod p
9: return C = (c0 + c1i)

Problem 2. On the SIDH protocol, an isogeny curve operation always precedes
calls to the isogeny evaluation function. Assuming that the inputs to formula (2)
are in the range [0, 2p), determine all the input/output bounds for the Fp2 oper-
ations in formula (3). At the Fp2 level assume the use of Algorithms 3 and 4 for
multiplications and squarings (resp.), and the use of additions and subtractions
without conditional corrections (unconditional corrections are allowed). What
bound should be in place for p with regard to R for the Montgomery reduction
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Algorithm 4 Specialized squaring in Fp2 with redundant representation.

Input: a = (a0 + a1i) ∈ Fp2 . Input coefficients are allowed to be in the range [0, 2p).
Output: c = a2 = (c0 + c1i) ∈ Fp2 . Output coefficients are allowed to be in the range
[0, 2p).

1: t0 ← a0 + a1, t1 ← a0 − a1 + 2p
2: t2 ← a0 + a0
3: c0 ← t0 × t1 mod p
4: c1 ← t2 × a1 mod p
5: return C = (c0 + c1i)

to work correctly? What single change is required in Algorithm 4 to keep all
inputs to Fp2 operations in a positive range?

Radix-r Montgomery reduction. Straight implementations of Montgomery
reduction as given in eq. (4) and its simplified variant in eq. (5) demand heavy
storage resources because they operate over the full input using the full modulus
in a single pass. A more practical approach proposed by Dussé and Kaliski Jr. [8]
processes the computation one digit at a time reducing with r at each iteration,
in what is called the radix-r Montgomery reduction. In this case, one picks a
radix r to represent the input and the modulus, fixes p′ = −p−1 mod r, and
computes n = dl/re iterations doing

c = (a+ (ap′ mod r) · p)/r. (6)

In a way, the original Montgomery reduction is simply a special case of the
radix-r variant, if we set r = 2N following the description at the beginning
of Section 3.2. But setting the radix to a smaller value brings several benefits,
including the reduction of the register use pressure and the reduction of the
number of memory accesses. For special primes like SIDH primes, there is also the
possibility of enabling further simplifications if r is such that p′ = −p−1 mod r ≡
1.

The Round 1 implementation of SIKE for x64 platforms6 used a variant of the
radix-r Montgomery reduction where r was set to 264 for a computer wordsize
w = 64. Internally, multiplications were done using Comba (i.e., carried out
in product-scanning form). Later on, Faz-Hernández et al. [9] showed that in
some cases it is more efficient to use a larger value for the radix. Ultimately, the
optimal value for r is platform-dependent, and depends on several factors such
as the number of general-purpose registers available, the relative cost of memory
reads/writes, the relative cost of multiplication and addition instructions, etc.
A flexible version of the approach optimized for SIDH/SIKE primes is shown in
Algorithm 5.

6 https://github.com/microsoft/PQCrypto-SIDH/releases/tag/v2.0

https://github.com/microsoft/PQCrypto-SIDH/releases/tag/v2.0
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Algorithm 5 Radix-r Montgomery reduction for a prime with the form p =
2e2 · 3e3 − 1.
Input: an integer a s.t. 0 ≤ a < pR, where R = 2nw, p = 2e2 · 3e3 − 1, n = dl/we,
l = dlog2 pe, and w is the computer wordsize; the value z = be2/wc represents the
number of 0-value limbs in (p + 1), and the value p̂ = (p + 1)/2zw; radix r = 2bw s.t.
b |n and 0 < b ≤ z.
Output: the Montgomery residue c = a ·R−1 mod p s.t. c ∈ [0, 2p).

1: t← a
2: for i = 1 to n/b do
3: q ← t mod 2bw

4: t← bt/2bwc+ 2(z−b)wq · p̂
5: return c← t

Algorithm 5 applies a reduction by r = 2bw at every iteration. As explained
before, the computation is simplified by noting that p′ = −p−1 mod 2bw ≡ 1
(this holds since 0 < b ≤ z, where z is the number of 0 w-bit digits of the value
p+ 1). Taking eq. (6) as starting point, the core computation in Algorithm 5 is
derived as follows

c = (a+ (ap′ mod r) · p)/r = (a+ (a mod 2bw) · p)/2bw

= (2bwba/2bwc+ a mod 2bw · (p+ 1))/2bw

= ba/2bwc+ 2(z−b)wa mod 2bw · (p+ 1)/2zw

= ba/2bwc+ 2(z−b)wq · p̂

The most expensive operation in Algorithm 5 is the computation q× p̂, which
consists of a b× (n− z)-digit multi-precision multiplication. Hence, it is crucial
to pick a suitable value for the radix that optimizes this operation for a given
platform. For example, on an x64 processor with support for carry-preserving in-
structions such as mulx, adcx and adox, this multiplication can be implemented
efficiently using the schoolbook method, as shown in [9].

Problem 3. Modify Algorithm 5 to make it work for any integer b in 0 < b ≤ z.

For some primes, it happens that e2/w ≈ be2/wc+ 1. Noticing this, Bos and
Friedberger [4] suggested to shift the value p̂ to increase z and trade multiplica-
tions for shifting operations in the computation q × p̂. For example, for p503 =
2250 · 3159− 1 we get z = 3 for w = 64, and the operation q× p̂ = q× (258 · 3159)
consists of an 8× 5-digit multiplication in Algorithm 5. But if instead we right-
shift p̂ to obtain the modified value p = 3159, the operation above is reduced to
an 8 × 4-digit multiplication. Afterwards, the result can be easily converted to
the correct value with a left-shift of 58 bits.
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4 Cryptanalysis and parameter selection for SIKE

Parameters for SIDH, and later for SIKE, were initially selected by modeling the
computational supersingular isogeny (CSSI) problem as a black-box claw find-
ing problem [10,5,3]. Solving this problem with a meet-in-the-middle (MitM)
attack has asymptotic exponential complexities O(p1/4) and O(p1/6) on clas-
sical and quantum computers, respectively [10]. Accordingly, the initial SIKE
submission to the NIST PQC effort in 2017 [3] included the parameter sets
SIKEp503, SIKEp751 and SIKEp964,7 to match or exceed the computational
resources required for key searches on AES128 (security level 1), AES192 (secu-
rity level 3) and AES256 (security level 5), respectively [17]. This changed later
on when Adj et al. [1] observed that the memory required by the MitM attack
was unrealistic (also of complexity O(p1/4)), and suggested to use instead the
van Oorschot-Wiener (vOW) parallel collision finding algorithm [18] to select
parameters. This work was followed up by complementary studies that extended
the analysis to quantum algorithms [11], and that confirmed the results for the
classical case [6]. Using the vOW algorithm as the overall best attack against
CSSI, the SIKE team updated their parameter selection for Round 2 of the NIST
PQC process8, proposing SIKEp434, SIKEp503, SIKEp610 and SIKEp751 for
NIST levels 1, 2, 3 and 5, respectively [3].

4.1 vOW on SIKE

Let f : S → S be a (pseudo-)random function on a finite set S. The vOW
algorithm finds collisions f(r) = f(r′) for distinct values r, r′ ∈ S. Define distin-
guished points as elements in S that have a distinguishing property that is easy
to test, and denote by θ the proportion of points of S that are distinguished.
The vOW algorithm proceeds by executing collision searches in parallel, where
each search starts at a freshly chosen point x0 ∈ S and produces a trail of
points ri = f(ri−1), for i = 1, 2, . . ., until a distinguished point rd is reached.
We denote by w to the number of triples with the form (r0, rd, d) that can be
stored in some shared memory that is available for the cryptanalysis, where each
triple represents a distinguished point and its corresponding trail. Every time
in a search that a distinguished point is reached, two cases arise: (i) if the re-
spective memory address is empty or holds a triple with a distinct distinguished
point, the new triple (r0, rd, d) is added to memory and a new search is launched
with a new starting point r0, or (ii) if the distinguished point in the respective
address is a match, a collision was detected. This process is repeated until the
so-called golden collision is detected, which is the one that solves the underlying
CSSI problem. Since some function versions can have a low chance of hitting the
right collision, the success probability is greatly improved by changing f after a
certain period of time.

7 The name of the parameter set is assembled by concatenating “SIKEp” and the
bitlength of the underlying prime p.

8 Note that there were no parameter changes for Round 3 compared to Round 2.
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Heuristically, van Oorschot and Wiener determined that the total runtime of
the algorithm is minimized when fixing w ≥ 210 and θ = 2.25

√
w/|S|, and the

total number of distinguished points generated by each function version before
it is replaced is set to 10w. Under these conditions, the total runtime to find a
golden collision is given by

T =

(
2.5

m

√
|S|3/w

)
t, (7)

where m is the number of search engines that are run in parallel by an attacker,
and t, in the case of SIDH/SIKE, is the time for one run of a degree-`e/2 isogeny.

As before, we have that p = 2e2 ·3e3−1. For typical parameters, running vOW
on SIKE is usually more efficient when run on the 2-torsion. In this case, we set
` = 2. For an even e2 the size of the search space is given by |S| = 2e2/2−1, while
for an odd e2 it is |S| = 2(e2−1)/2. Costello et al. [6] showed that it is possible to
fit a memory unit containing a triple (r0, rd, d) in d(2 log |S|+ log 20)/8e bytes.

4.2 Cost models to estimate SIKE’s security

Cost using the RAM model. The random access machine (RAM) model is
typically used in algorithmic complexity analysis to estimate the total cost of
running a certain algorithm. Simple versions of this approach use query com-
plexity in conjunction with the approximated “time” that it takes to run an
iteration of the algorithm, where “time” can be expressed using different units,
such as clock cycles or instructions.

In Table 1, we show the classical security estimates for SIKE with respect to
the vOW algorithm and using the RAM model. The query complexity for vOW
is obtained by setting t = m = 1 in eq. (7) and assuming the availability of a
shared memory with capacity for w = 280 memory units. The time to run an
iteration of the algorithm is taken as the number of x64 instructions that are
executed in the computation of a degree-2e2/2 isogeny [6].

Alternative cost models. One problem with the RAM model used to estimate
the cost of cryptanalyzing SIKE is that it ignores the significant cost of the
memory resources that are required to run vOW. In the specific case of Round
2 and Round 3 parameters, the 280 memory units assigned to w in Table 1 are
assumed to be given for free [1,6]. In contrast, Longa et al. [12] suggested to use
a budget-based cost model that takes into account the cost of both computing
and memory resources to determine the cryptanalysis cost. The analysis in [12]
showed that, when considering the significant cost of memory, the Round 2 and
Round 3 SIKE parameters are much more conservative than previously believed.
The reader is referred to [12] for complete details.

A more standard approach is to use the non-local gate model and assume
that the cost of memory is either O(w1/2) or O(w1/3). For the non-local gate
model the cost is estimated as
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Table 1: Classical cost to run vOW on the 2-torsion for the Round 3 SIKE parameters
using the RAM model [6]. Memory size is set to w = 280, set size is given by |S| =
2e2/2−1. Numbers are shown as the floor of their base-2 logarithms. The number of
isogeny computations, #isog, represents vOW’s query complexity and is computed by
setting m = t = 1 in eq. (7). The numbers isum of instructions for each isogeny are
taken from [6, Table 5]. The total number of instructions, vOW, is the product of
#isog and isum and is an estimate of the lower bound on the number of gates required
to solve the CSSI problem with vOW.

|S| #isog isum vOW
Classical gate

requirement (NIST)

SIKEp434 107 121 22 143 143

SIKEp503 124 147 23 170 146

SIKEp610 151 187 23 210 207

SIKEp751 185 238 24 262 272

query complexity× gates×memory. (8)

Table 2 details the SIKE security estimates for level 1 parameters using this
model. SIKEp377 is a new parameter set proposed in [12] that was showed to
match more closely the NIST security level 1 requirement.

Table 2: Classical cost to run vOW on the 2-torsion for security level 1 parameters
using the non-local gate model. The set size is given by |S| = 2e2/2−1 for even e2 and
|S| = 2(e2−1)/2 for odd e2. vOW’s query complexity is calculated by setting m = t = 1
in eq. (7). The gate complexity is fixed to 341, 300 and 372, 200 gates for SIKEp377
and SIKEp434 (resp.), following the hardware implementation results from [12]. The
cost of memory is assumed to be either O(w1/2) or O(w1/3). For the latter, to estimate
the number of memory units w we assume a budget of 264 US dollars, that a byte
of memory costs 0.22 × 10−11 US dollars [12, Table 10], and that each memory unit
occupies d(2 log |S| + log 20)/8e bytes [6]. The total security estimates are obtained
using eq. (8). Numbers are shown as the floor of their base-2 logarithms.

Memory
SIKEp434 SIKEp377

Classical gate

cost requirement (AES128)

O(w1/2) 180 162
143

O(w1/3) 164 145
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Problem 4. Using the non-local gate model with a memory cost of O(w1/3), find
the most efficient SIKE parameter set that fulfills a low security target of at least
104 bits (i.e., a classical gate requirement of at least 2104). Assume that the gate
complexity of the half degree isogeny implementation is 218 gates. To calculate
w assume a budget of 264 US dollars, that a byte of memory costs 0.22× 10−11

US dollars, and that each memory unit occupies d(2 log |S| + log 20)/8e. Make
sure p is “well-balanced” for security reasons, i.e., for p = 2e2 ·3e3 −1, we should
have e2 ≈ e3 (say, it should hold that |e2 − e3| ≤ 5).
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formulas for computing pairings over ordinary curves. In Advances in Cryptology –
Eurocrypt 2011, volume 6632 of Lecture Notes in Computer Science, pages 48–68.
Springer, 2011.

3. Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, David Jao,
Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovan-
dro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik. Su-
persingular Isogeny Key Encapsulation (SIKE), 2017–2021. Latest spec-
ification available at https://sike.org. Round 1 submission available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/submissions/SIKE.zip. Round 2 submission available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-2/submissions/SIKE-Round2.zip.

4. Joppe W. Bos and Simon Friedberger. Fast arithmetic modulo 2x py ± 1. In Neil
Burgess, Javier D. Bruguera, and Florent de Dinechin, editors, 24th IEEE Sym-
posium on Computer Arithmetic, ARITH 2017, pages 148–155. IEEE Computer
Society, 2017.

5. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-
singular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016, volume 9814 of LNCS, pages 572–601.
Springer, 2016.

6. Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia.
Improved classical cryptanalysis of SIKE in practice. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography -
PKC 2020, volume 12111 of LNCS, pages 505–534. Springer, 2020.
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