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Background

Quantum computers build on the principles of quantum mechanics.
It can solve some problems much faster than the traditional
computers.

A famous example is the Shor’s integer factorization algorithm.

The widely used cryptosystem, RSA, relies on factoring being
impossible for large integers. But Shor’s algorithm shows that this
problem is easy for a quantum computer.
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Backgrounds

To study quantum computers, don’t worry if you don’t know too
much about quantum mechanics. What you need to know is linear
algebra.

In this lecture, I will introduce some fundamental concepts and
results. Hope to help you better understand other lectures this
week.

I will not introduce the definitions in a very formal way because
you can find it in many textbooks. I prefer to use examples to
explain the concepts.
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Preliminaries

The Deutsch-Jozsa algorithm

Simon’s algorithm

Quantum Fourier transform

Grover’s algorithm

Further readings
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Qubits
Qubit (Quantum bit): α|0〉+ β|1〉, where |α|2 + |β|2 = 1 and

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
.

The special states {|0〉, |1〉} are known as computational basis
states.

2 qubit state:

α00|0〉 ⊗ |0〉+ α01|0〉 ⊗ |1〉+ α10|1〉 ⊗ |0〉+ α11|1〉 ⊗ |1〉

where |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

We will simply write |i〉 ⊗ |j〉 as |i〉|j〉, |i, j〉 or |ij〉.

n qubit state: ∑
x∈{0,1}n

αx|x〉

where
∑

x∈{0,1}n |αx|2 = 1.
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Dirac notation

For a unit column vector v = (v0, . . . , vn−1)
T , in quantum

computing, we denote it as

|v〉 =

n−1∑
j=0

vj |j〉,

where {|0〉, . . . , |n− 1〉} corresponds to the standard basis of Cn.

Its conjugate transpose is denoted as

〈v| =
n−1∑
j=0

v̄j〈j|.

It is a row vector.
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Unitary operations
Since quantum states are unit, we are allowed to use unitary
operators to quantum state to keep the norm.

A operator U is called unitary if UU † = U †U = I. Here † is
conjugate transpose.

Examples:

Hadamard gate: H = 1√
2

(
1 1
1 −1

)
.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Control gate: |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where U0, U1 are unitary
operators. It means if the first qubit is |i〉, then we apply Ui to the
second state.

α0|0〉|φ0〉+ α1|1〉|φ1〉 7→ α0|0〉U0|φ0〉+ α1|1〉U1|φ1〉.

The matrix form

(
U0

U1

)
.

7 / 48



Unitary operations
Since quantum states are unit, we are allowed to use unitary
operators to quantum state to keep the norm.

A operator U is called unitary if UU † = U †U = I. Here † is
conjugate transpose.

Examples:

Hadamard gate: H = 1√
2

(
1 1
1 −1

)
.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Control gate: |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where U0, U1 are unitary
operators. It means if the first qubit is |i〉, then we apply Ui to the
second state.

α0|0〉|φ0〉+ α1|1〉|φ1〉 7→ α0|0〉U0|φ0〉+ α1|1〉U1|φ1〉.

The matrix form

(
U0

U1

)
.

7 / 48



Unitary operations
Since quantum states are unit, we are allowed to use unitary
operators to quantum state to keep the norm.

A operator U is called unitary if UU † = U †U = I. Here † is
conjugate transpose.

Examples:

Hadamard gate: H = 1√
2

(
1 1
1 −1

)
.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Control gate: |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where U0, U1 are unitary
operators. It means if the first qubit is |i〉, then we apply Ui to the
second state.

α0|0〉|φ0〉+ α1|1〉|φ1〉 7→ α0|0〉U0|φ0〉+ α1|1〉U1|φ1〉.

The matrix form

(
U0

U1

)
.

7 / 48



Unitary operations
Since quantum states are unit, we are allowed to use unitary
operators to quantum state to keep the norm.

A operator U is called unitary if UU † = U †U = I. Here † is
conjugate transpose.

Examples:

Hadamard gate: H = 1√
2

(
1 1
1 −1

)
.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Control gate: |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where U0, U1 are unitary
operators. It means if the first qubit is |i〉, then we apply Ui to the
second state.

α0|0〉|φ0〉+ α1|1〉|φ1〉 7→ α0|0〉U0|φ0〉+ α1|1〉U1|φ1〉.

The matrix form

(
U0

U1

)
.

7 / 48



Unitary operations
Since quantum states are unit, we are allowed to use unitary
operators to quantum state to keep the norm.

A operator U is called unitary if UU † = U †U = I. Here † is
conjugate transpose.

Examples:

Hadamard gate: H = 1√
2

(
1 1
1 −1

)
.

Pauli matrices: σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Control gate: |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, where U0, U1 are unitary
operators. It means if the first qubit is |i〉, then we apply Ui to the
second state.

α0|0〉|φ0〉+ α1|1〉|φ1〉 7→ α0|0〉U0|φ0〉+ α1|1〉U1|φ1〉.

The matrix form

(
U0

U1

)
.

7 / 48



Measurements

For a quantum state |φ〉 =
∑

x αx|x〉, we can measure it in the
computational basis. The probability to obtain |x〉 is |αx|2.

For example

|φ〉 =
1

2
|00〉+

1

2
|01〉 − 1√

2
|11〉.

With probability 1/4, we obtain |00〉, also |01〉. With probability
1/2, we obtain |11〉.

We can do partial measurement. For |φ〉, if we only measure the
first qubit, then with probability 1/2, we obtain |0〉. The state
associated to |0〉 is (|0〉+ |1〉)/

√
2.
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Quantum circuit
A quantum circuit can be drawn as a diagram by associating each
qubit with a horizontal “wire”, and drawing each gate as a box
across the wires corresponding to the qubits on which it acts.

The above circuit corresponds to the unitary operator

(I2 ⊗ V )(U ⊗ I2)(H ⊗ I2 ⊗X)

on 3 qubits.
For control gate |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1, the quantum circuit is
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Implement classical operations in a quantum computer

Let f : {0, 1}m → {0, 1}n be a function, it becomes a unitary
operator by the following trick

f ′ : {0, 1}m × {0, 1}n → {0, 1}m × {0, 1}n

(x, y) → (x, y ⊕ f(x)).

In a quantum computer, we denote it as

Of : {0, 1}m × {0, 1}n → {0, 1}m × {0, 1}n

|x〉|y〉 → |x〉|y ⊕ f(x)〉.

It is called an oracle to query functions.

10 / 48



Implement classical operations in a quantum computer

Let f : {0, 1}m → {0, 1}n be a function, it becomes a unitary
operator by the following trick

f ′ : {0, 1}m × {0, 1}n → {0, 1}m × {0, 1}n

(x, y) → (x, y ⊕ f(x)).

In a quantum computer, we denote it as

Of : {0, 1}m × {0, 1}n → {0, 1}m × {0, 1}n

|x〉|y〉 → |x〉|y ⊕ f(x)〉.

It is called an oracle to query functions.

10 / 48



Implement classical operations in a quantum computer

When n = 1, sometimes it is convenient to use

Uf : {0, 1}m → {0, 1}m

|x〉 → (−1)f(x)|x〉.

We can implement Uf from Of .

More precisely, denote |−〉 = 1√
2
(|0〉 − |1〉), then

|x〉|−〉
Of−−→ 1√

2
|x〉(|f(x)〉 − |1⊕ f(x)〉).

If f(x) = 0, the result is |x〉|−〉; If f(x) = 1, the result is −|x〉|−〉.
In summary, the result is

(−1)f(x)|x〉|−〉.
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Universial set

In principle, any unitary operator on n qubits can be implemented
using only 1- and 2-qubit gates. Most unitary operators on n
qubits can only be realized using an exponentially large circuit of
1- and 2-qubit gates.

In general, we are content to give circuits that give good
approximations of our desired unitary operators.

A set of quantum gates is called universal if any unitary operator
can be approximately represented as a circuit the gates in the set.

For example, the set {H,T,C} with

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0

0 e−πi/4

)
, C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Complexity

Gate complexity: The number of elementary gates used in the
universal set.

Up to some poly-log terms, the gate complexity does not change if
universal set varies.

Query complexity: The number of evaluations to the given
function, i.e., the number of Of (or Uf ) used in the quantum
circuit.
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Quantum Fourier transform

Grover’s algorithm

Further readings
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Deutsch-Jozsa problem

The Deutsch-Jozsa algorithm was the first to show a separation
between the quantum and classical difficulty of a problem.

Definition 1 (Deutsch-Jozsa problem)

Let f : {0, 1}n → {0, 1}. It is promised to be constant or balanced
(i.e., |f−1(0)| = |f−1(1)| = 2n−1). The goal is to decide which is
the case by making as few function evaluations as possible.

Classically, it requires 2n−1 + 1 function evaluations. However, the
Deutsch-Jozsa algorithm only uses 1 function evaluation.
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Deutsch-Jozsa algorithm

The circuit of Deutsch-Jozsa algorithm is very simple:

The last step means measurement.
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Deutsch-Jozsa algorithm
1. The initial state is |0〉⊗n.

2. In the first step, we apply H⊗n, then we obtain

1√
2n

(|0〉+ |1〉)⊗n =
1√
2n

∑
y∈{0,1}n

|y〉.

3. In the second step, we apply Uf which gives

1√
2n

∑
y∈{0,1}n

(−1)f(y)|y〉.

4. Finally, we apply H⊗n again

1

2n

∑
z∈{0,1}n

 ∑
y∈{0,1}n

(−1)f(y)+y·z

 |z〉.
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Deutsch-Jozsa algorithm

Now let us check the possible outputs:

I If f is constant, say f(y) = 0 for all y, then

1

2n

∑
y∈{0,1}n

(−1)f(y)+y·z =

{
1 z = 0

0 z 6= 0

So final state is |0〉⊗n. If we perform measurement, we always
obtain |0〉⊗n.

I If f is balanced, then the coefficient of |0〉⊗n

1

2n

∑
y∈{0,1}n

(−1)f(y) = 0.

We therefore never obtain |0〉⊗n by measuring the final state.
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Simon’s problem

Simon’s algorithm was the first quantum algorithm to show an
exponential speed-up versus the best classical algorithm.

Definition 2 (Simon’s problem)

Let f : {0, 1}n → {0, 1}n. There is a unknown s such that
f(x) = f(y) if and only if y = x⊕ x. The goal is to find s.

The classical algorithm needs at least 2n/2 queries to f . While
Simon’s algorithm only uses O(n) queries.
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Simon’s algorithm

The circuit of Simon’s algorithm is very similar to the circuit of
Deutsch-Jozsa algorithm:
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Simon’s algorithm

1. The initial state is |0n〉|0n〉.

2. In the first step, we apply H⊗n ⊗ I

1√
2n

∑
y∈{0,1}n

|y〉|0n〉.

3. In the second step, we apply Of

1√
2n

∑
y∈{0,1}n

|y〉|f(y)〉.

4. Finally we apply H⊗n ⊗ I again

1

2n

∑
z∈{0,1}n

∑
y∈{0,1}n

(−1)y·z|z〉|f(y)〉.
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|y〉|f(y)〉.

4. Finally we apply H⊗n ⊗ I again

1

2n

∑
z∈{0,1}n

∑
y∈{0,1}n

(−1)y·z|z〉|f(y)〉.
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Simon’s algorithm

Recall that f(x) = f(y) iff y = x⊕ s, so we can split {0, 1}n into
A ∪ (A⊕ s). On A, f is one-to-one.

In the final state,∑
y∈{0,1}n

(−1)y·z|z〉 =
∑
y∈A

(
(−1)y·z + (−1)(y⊕s)·z

)
|z〉

=
∑
y∈A

(−1)y·z
(

1 + (−1)s·z
)
|z〉.

The coefficient is nonzero if s · z = 0.

If we run the above process n− 1 times, we obtain z1, . . . , zn−1
such that s · zi = 0 for all i. From this linear system, we can
determine s.
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Quantum Fourier Transform (QFT)

Definition 3 (Quantum Fourier Transform (QFT))

Let N be a integer, ω = e2πi/N , the QFT is defined by

QN : ZN → ZN

|x〉 7→ 1√
N

∑
y∈ZN

ωxy|y〉.

I A very important unitary operator in quantum information
theory.

I It is the normalized discrete Fourier transform.
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Quantum Fourier Transform (QFT)

In matrix form:

QN =
1√
N

∑
x,y∈ZN

ωxy|y〉〈x|.

The inverse of QFT is

Q−1N : |x〉 7→ 1√
N

∑
y∈ZN

ω−xy|y〉.

Check:

Q−1N QN |x〉 =
1

N

∑
z∈ZN

∑
y∈ZN

ωy(x−z)

 |z〉 = |x〉.
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Quantum Fourier Transform (QFT)

Example 4

Q2 =
1√
2

(
1 1
1 −1

)
, Q3 =

1√
3

1 1 1

1 e2πi/3 e−2πi/3

1 e−2πi/3 e2πi/3

 ,

Q4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

27 / 48



Efficient implementation of the QFT

It can be implemented using O(log2N) elementary quantum gates:

H =
1√
2

(
1 1
1 −1

)
, Rd =

(
1 0

0 eπi/2
d

)
.

Let’s take a look at the case N = 8:

Q4|x0, x1, x2〉

=
1√
8

1∑
y0,y1,y2=0

e2πi(x(y0+2y1+4y2))/8|y0, y1, y2〉

=
1√
8

 1∑
y0=0

eπixy0/4|y0〉

 1∑
y1=0

eπixy1/2|y1〉

 1∑
y2=0

eπixy2 |y2〉


Note: |x〉 = |x0, x1, x2〉 and x = x0 + 2x1 + 4x2 is the binary form.
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Efficient implementation of the QFT

1∑
y0=0

eπixy0/4|y0〉 =

1∑
y0=0

eπix0y0/4eπix1y0/2eπix2y0 |y0〉

1∑
y1=0

eπixy1/2|y1〉 =
1∑

y1=0

eπix0y1/2eπix1y1 |y1〉

1∑
y2=0

eπixy2/2|y2〉 =
1∑

y2=0

eπix0y2 |y2〉.
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Applications of QFT: quantum phase estimation (QPE)
An important subroutine of many quantum algorithms.

Input: a unitary U and a eigenvector |ψ〉.
Output: θ ∈ [0, 2π) such that U |ψ〉 = e2πiθ|ψ〉.

1. Prepare the initial state |0n〉|ψ〉.
2. Apply Hadamard gates H⊗n to the first register:

1√
2n

2n−1∑
x=0

|x〉|ψ〉.

3. Apply control gate
∑

x |x〉〈x| ⊗ Ux:

1√
2n

2n−1∑
x=0

e2πixθ|x〉|ψ〉.

4. Apply QFT−1 to |x〉:

1

2n

2n−1∑
y=0

(
2n−1∑
x=0

e2πix(θ−y/2
n)

)
|y〉|ψ〉.
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Applications of QFT: quantum phase estimation (QPE)

Denote δy = θ − y/2n. The coefficient of |y〉|ψ〉 is

1

2n

∣∣∣∣∣
2n−1∑
x=0

e2πiδyx

∣∣∣∣∣ =
1

2n

∣∣∣∣e2πiδy2n − 1

e2πiδy − 1

∣∣∣∣ =
1

2n

∣∣∣∣sin(πδy2
n)

sin(πδy)

∣∣∣∣ .
If |δy|2n ≤ 1/2, then the above quantity is lower bounded by

≥ 1

2n

∣∣∣∣2δy2nπδy

∣∣∣∣ =
2

π

based on the fact sin(t) ≥ 2t/π when |t| ≤ π/2.

This means by measurement, we obtain y such that y/2n ≈ θ.
The success probability is at least 4/π2.

We can modify the algorithm to ensure the success probability is at
least 1− ε for arbitrary small ε.
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Applications of QFT: period finding

One of the most important applications of the QFT, the key step
of Shor’s algorithm.

Imagine we are given access to an oracle Of function
f : Z2n → Z2m , for some integers n and m, such that:

I f is periodic: there exists r such that r divides 2n and
f(x+ r) = f(x) for all x ∈ Z2n ;

I f is one-to-one on each period: for all pairs (x, y) such that
|x− y| < r, f(x) 6= f(y).

Our task is to determine r.

Recall: Of : |x〉|y〉 = |x〉|y ⊕ f(x)〉.
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Applications of QFT: period finding
I We start with the state |0n〉|0m〉.

I Apply Q2n to the first register:

1√
2n

2n−1∑
x=0

|x〉|0m〉.

I Apply Of to the two registers:

1√
2n

2n−1∑
x=0

|x〉|f(x)〉 =
1√
2n

r−1∑
y=0

2n/r−1∑
j=0

|y + jr〉

 |f(y)〉

I Measure the second register: obtain a random y

√
r√
2n

2n/r−1∑
j=0

|y + jr〉
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Applications of QFT: period finding
I Apply Q2n to the first register: ω = e2πi/2

n

√
r

2n

2n−1∑
z=0

ωyz

2n/r−1∑
j=0

ωjrz

 |z〉.

Note that if ωrz 6= 1, i.e., rz 6≡ 0 mod 2n, then

2n/r−1∑
j=0

ωjrz =
ωrz2

n − 1

ωrz − 1
= 0.

So the state is
1√
r

r−1∑
s=0

|2
n

r
s〉.

Measure it we obtain a random s (unknown) and z (known)
such that z/2n = s/r. If s is coprime to r, then we can
determine r by simplify z/2n. This happens with probability
at least 1/ log log r.
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Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Shor’s algorithm

Input: Integer N
Output: integers p, q such that N = pq

1. Choose 1 < a < N uniformly at random.

2. Compute b = gcd(a,N). If b > 1 output b and stop. 1

3. Compute the order r of a. If r is odd, go to step 1. 2

4. Compute s = gcd(ar/2 − 1, N). If s = 1, go to step 1.

5. Output s,N/s.

Step 3 is technical, it relates to period finding. Consider

f(x) = ax mod N.

We can check that f is periodic with period r and one-to-one on
each period.

1gcd = greatest common divisor.
2order: the minimal r > 0 s.t. ar ≡ 1 mod N .

35 / 48



Preliminaries

The Deutsch-Jozsa algorithm

Simon’s algorithm

Quantum Fourier transform

Grover’s algorithm

Further readings

36 / 48



Grover’s algorithm

A simple example of a problem that fits into the query complexity
model is the unstructured search problem.

Definition 5 (Grover’s search problem)

Given access to a function f : ZN → {0, 1} with the promise that
f(x0) = 1 for a unique element x0. Our task is to determine x0.

Classical algorithm: N queries (i.e., N function evaluations to f).
Quantum algorithm: O(

√
N) queries.
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Grover’s algorithm

1. Prepare |φ〉 = H⊗n|0n〉

2. Repeat the following operations O(
√
N) times:

2.1 Apply Uf

2.2 Apply D := −H⊗nU0H
⊗n, where U0 maps |0n〉 to −|0n〉 and

keeps all other basis states invariant.

3. Measure all the qubits and output the result.

Recall: Uf |x〉 = (−1)f(x)|x〉. This is a reflection.

D is another reflection.

So DUf is a rotation.
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Grover’s algorithm
In circuit diagram form, Grover’s algorithm looks like this:

Note that

|φ〉 = H⊗n|0n〉 =
1√
N

∑
x∈ZN

|x〉.

It formally equals

|φ〉 =
1√
N
|x0〉+

√
N − 1√
N
|x⊥0 〉,

where

|x⊥0 〉 =
1√
N − 1

∑
x∈ZN ,x 6=x0

|x〉.
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Grover’s algorithm: Geometric argument

|x⊥0 〉

|x0〉

|φ〉

|φ〉 = sin θ|x0〉+ cos θ|x⊥0 〉
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Grover’s algorithm: Geometric argument

|x⊥0 〉

|x0〉

|φ1〉

|φ1〉 = Uf |φ〉
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Grover’s algorithm: Geometric argument

|x⊥0 〉

|x0〉

|φ2〉

|φ2〉 = D|φ1〉
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Grover’s algorithm: Geometric argument

|x⊥0 〉

|x0〉

|φ3〉

|φ3〉 = Uf |φ2〉
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Grover’s algorithm: Geometric argument

|x⊥0 〉

|x0〉 |φ4〉

|φ4〉 = D|φ3〉
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Grover’s algorithm

We denote sin θ = 1/
√
N and cos θ =

√
N − 1/

√
N . In step 3, we

can denote U0 = I − 2|0n〉〈0n| so that D = −(I − 2|φ〉〈φ|).

So in step 3, first Uf maps |φ〉 to

− sin θ|x0〉+ cos θ|x⊥0 〉.

Then apply D to obtain

sin θ(I − 2|φ〉〈φ|)|x0〉 − cos θ(I − 2|φ〉〈φ|)|x⊥0 〉
= sin θ(|x0〉 − 2 sin θ(sin θ|x0〉+ cos θ|x⊥0 〉))
− cos θ(|x⊥0 〉 − 2 cos θ(sin θ|x0〉+ cos θ|x⊥0 〉))

= sin(3θ)|x0〉+ cos(3θ)|x⊥0 〉.

As we have seen, DUf is the product of two reflections in the
plane spanned by {|x0〉, |x⊥0 〉}. So DUf is a rotation of angle 2θ.
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Grover’s algorithm

Hence, after T steps of iteration we obtain

sin((2T + 1)θ)|x0〉+ cos((2T + 1)θ)|x⊥0 〉.

Since sin θ = 1/
√
N , we have θ ≈ 1/

√
N . To make sin((2T + 1)θ)

close to 1, we can choose T so that (2T + 1)θ ≈ π/2. Namely,
T ≈

√
Nπ/4− 1/2.
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Further readings

You may find the following lecture notes and books useful:

I Lecture Notes on Quantum Algorithms, Andrew Childs,
University of Maryland
http://www.cs.umd.edu/~amchilds/qa/

An excellent resource for more advanced topics on quantum
algorithms.

I Quantum Computing: Lecture Notes, Ronald de Wolf,
QuSoft, CWI and University of Amsterdam
https://export.arxiv.org/abs/1907.09415

A comprehensive lecture note for more topics on quantum
computing.

I Quantum Computation and Quantum Information, Nielsen
and Chuang
Cambridge University Press, 2001
The Bible of quantum computing.
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