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Abstract

In this course we will discuss about the computation of isogenies between polarized abelian
varieties, and highlight the basics behind one of the approaches, using the theory of theta
functions and projective embeddings.

1 Introduction

There are two things one can understand when people talk about “isogeny computation”, and
both equally deserve to be called so. Let’s for simplicity assume we are in genus 1, and let us
fix an algebraically closed field k.

1. Given two elliptic curves E and E′ that are isogenous, one could be interested in

- finding the/a kernel of the/an isogeny.

- finding the equations of a/the isogeny f : E → E′.

- evaluating an isogeny f on points (i.e. given P ∈ E(k), compute f(P ) ∈ E′(k)).

2. Given an elliptic curve E and a finite subgroup G ⊂ E(k), one could be interested in

- finding the target elliptic curve E′ = E/G.

- finding equations for f : E → E′.

- evaluating f on points.

In this course we will focus on the second question only. While for elliptic curves you may take
any finite subgroup of your choice, there are rather restrictive conditions on the kernel for the
existence of an isogeny in higher dimensions (which we will discuss in Section 3.1).
As we already know, for elliptic curves we can find algebraic equations that define the variety,
and we can find equations for isogenies (Vélu’s formula), i.e. given P = (xP , yP ) ∈ E(k) find
“quotients of polynomials” so that f(xP , yP ) = (f1(xP , yP ), f2(xP , yP )) ∈ E′(k). In higher
dimensions things get more complicated. The goal of this course is to see why things are getting
more complicated, which additional information one has to take into account when studying
higher dimensions, and highlight some of the ideas on how to compute isogenies in this case.
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2 Polarizations

Elliptic curves are nice since we know/can determine their algebraic equations. But we tend to
ignore an additional natural object elliptic curves (and Jacobian varieties in general) are endowed
with, which are polarizations. There is a rather technical definition (algebraic equivalence class
of an ample line bundle), an easier way to see it is: “a certain kind of isogeny A→ A∨” (here, A is
an abelian variety and A∨ its dual abelian variety). We will see in Section 2.2 how polarizations
look like over C.

2.1 Why do polarizations matter?

Let us state two reasons why it is necessary to look at polarizations when one studies higher-
dimensional abelian varieties.

i) For a Jocabian variety of a curve a (principal) polarization uniquely determines the un-
derlying curve (up to isomorphism). E.g. we know from dimension 1 that if E is an
elliptic curve, then any finite subgroup G induces an isogeny E → E/G =: E′, and E′ is a
unique (up to isomorphism) well defined elliptic curve. However, for a higher-dimensional
Jacobian variety Jac(C), assuming that for some finite subgroup G we know that the
quotient is the Jacobian variety of some smooth curve, i.e. there exists C ′ such that
Jac(C)/G ∼= Jac(C ′), the curve C ′ need not be unique! There might exist C ′′ not isomor-
phic to C ′ such that Jac(C ′′) ∼= Jac(C ′) (as abelian varieties). As we know from Torelli’s
theorem, if one considers pairs of a Jacobian variety together with a principal polariza-
tion, then an isomorphism class of principally polarized Jacobians uniquely determines an
isomorphism class of curves. Hence, if one wants to compute isogenies from kernel (i.e.
given Jac(C) and G, compute the curve C ′ such that Jac(C)/G ∼= Jac(C ′)) one needs to
consider principal polarizations too!

ii) The Jacobian variety Jac(C) is an abelian variety, and the group structure is easy to
understand (it is probably also easy to construct group morphisms Jac(C) → Jac(C ′)).
But it is highly non-trivial to see/describe the algebraic structure (recall that for elliptic
curves we have/can find an equation E : y2 = x3 + ax+ b). A way to study the algebraic
structure of higher-dimensional abelian varieties is via the theory of projective embeddings
by means of theta functions (for which you need polarizations).

2.2 Polarizations over C

Recall that any connected compact complex Lie group is a complex torus A = Cg/Λ.

Definition 1. A polarization H on A is a positive definite hermitian form H : Cg × Cg → C,
which, if written H = ReH + i ImH, must satisfy ImH|Λ×Λ → Z.

By the elementary divisor theorem there exists a Z-basis λ1, . . . , λg, µ1, . . . , µg of Λ such that

ImH =

(
0 δ
−δ 0

)
,

δ = diag(d1, .., dg) with d1 | · · · | dg. The form ImH is non-degenerate, which is equivalent to
di 6= 0 for all i. The vector (d1, . . . , dg) is called the type of the polarization, d1 · · · dg is the
degree of the polarization, and degree-1 polarizations are called principal polarization.
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Example 1. Let E = C/τZ⊕ Z be an elliptic curve, where τ = τ1 + iτ2 with τ2 > 0. Consider
the hermitian form

H(u, v) =
u · v̄
τ2

.

It is easily seen to be positive, and on the (natural) basis {τ, 1} of τZ⊕ Z we have:

ImH(τ, τ) = ImH(1, 1) = 0

ImH(τ, 1) = 1 = −ImH(1, τ).

We deduce that elliptic curves are principally polarized!

This construction generalizes to tori Cg/ΩZg ⊕ Zg, where Ω ∈ Hg - the Siegel upper half-space.
(Hg is a moduli space for principally polarized abelian varieties (p.p.a.v.) of dimension g.)

2.3 Theta functions over C

Recall the definition of the Jacobi theta function

θ : C×H → C, θ(z, τ) =
∑
ν∈Z

exp(πiν2τ + 2πiνz).

Given a, b ∈ R, we can define the theta function with characteristics as

θ
[
a
b

]
(z, τ) =

∑
ν∈Z

exp(πi(ν + a)2τ + 2πi(ν + a)(z + b)).

(With generalization to higher dimensions, replacing τ ∈ H with Ω ∈ Hg.)
Consider τ fixed, and let us have a look at the torus Eτ = C/τZ ⊕ Z and the theta function
θ
[
a
b

]
(z, τ). It satisfies some “quasi-periodicity” with respect to the lattice τZ⊕ Z:

θ
[
a
b

]
(z + nτ +m) = exp(−πin2τ − 2πinz + 2πi(am− bn)) θ

[
a
b

]
(z).

If we tweak the function a bit (to turn it into a theta function for a degree-4 polarization, see
Example 2) and define

θ̃
[
a
b

]
(z) := θ

[
a
b

]
(4z, 4τ)

and restrict to a ∈ {d/4 : d = 0, .., 3} and b = 0, we obtain four functions that satisfy

θ̃
[
d/4
0

]
(z + nτ +m) = exp(−4πin2τ − 8πinz) θ̃

[
d/4
0

]
(z).

Note that the quasi-periodicity no longer depends on the characteristic d/4.
The four functions θ̃

[
0/4
0

]
, . . . , θ̃

[
3/4
0

]
are not periodic with respect to τZ⊕ Z, and therefore do

not induce functions on the torus C/τZ⊕ Z. However:

- Quotients of theta functions are C-valued functions on C/τZ⊕Z (called abelian functions).

- The map
ϕ : C/τZ⊕ Z→ P3, z 7→ (θ̃

[
0/4
0

]
(z) : · · · : θ̃

[
3/4
0

]
(z))

is a well defined function (provided not all θ̃
[
d/4
0

]
vanish simultaneously).
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Theorem 1 (Lefschetz). For n ≥ 3, if we have n C-linearly independent such functions, then
ϕ : C/τZ⊕ Z→ Pn−1 is an analytic embedding.

See e.g. [BL04, Thm. 4.5.1] for the above theorem.

Theorem 2 (Chow). A closed analytic subvariety of Pn−1 is an algebraic variety.

As a consequence of the above theorems: given a polarized abelian variety (Cg/Λ, H) with
“sufficiently many theta functions”, one can embed

Cg/Λ ↪→ Pn−1,

where n = dimC{theta functions}.

Example 2. The functions θ̃
[
0/4
0

]
, . . . , θ̃

[
3/4
0

]
can be seen as theta functions with respect to the

polarization H(u, v) = 4u·v̄τ2 (which is of type (4)), and they induce an embedding of the elliptic

curve C/τZ⊕ Z into P3.

More generally, given a Jacobian variety Jac(C) with a polarization of sufficiently high degree
(e.g. a power of principal polarization), we have an embedding

Jac(C) ↪→ Pn−1.

As a consequence: algebraic relations among theta functions can be seen as equations defin-
ing Jac(C). They are referred to as Riemann’s theta relations. In a series of three papers
[Mum66], [Mum67a], [Mum67b], called On the equations defining abelian varieties, David Mum-
ford showed that the same is true over any algebraically closed field.

2.4 Theta functions over arbitrary fields

Given an algebraically closed field k, we cannot consider theta functions as actual k-valued
functions on the abelian variety, but should see them as global sections of some line bundles.
Let A be an abelian variety over k and L an ample line bundle on A. If θ : A → L is a global
section of L and if x ∈ A(k), then for any open neighborhood U of x there exists a k-valued
function θU : U → k. On overlaps we have θU |U∩V = λU ,V ·θV |U∩V and the “factor of automorphy”
λU ,V : U ∩ V → k× does not depend on θ. Given θ1, . . . , θn : A→ L, we can thus define a map

ϕ : A→ Pn−1, z 7→ (θ1,U (z) : · · · : θn,U (z)) = (θ1,V(z) : · · · : θn,V(z))

(provided not all θi vanish simultaneously).

Theorem 3 (Lefschetz). If we have sufficiently many k-linearly independent theta functions,
then ϕ is an algebraic embedding.

3 Computing isogenies from kernel

Given (A,H) a principally polarized abelian variety (here, H stands for the algebraic equivalence
class of a line bundle) and a finite subgroup G ⊂ A(k), we are interested in “computing” the
target abelian variety B := A/G and in evaluating the isogeny f : A → B on points (given P ,
compute f(P )). As we have seen, for elliptic curves you can take any finite subgroup G and E/G
will always be principally polarizable. In higher dimension you need to carefully pick your
subgroup if you want A/G to admit a principal polarization! Let us first list some results that
we have at our disposal that will help us to compute A/G:
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i) Thomae’s formula [Tho70]: if C is a hyperelliptic curve of genus g, we can compute 4g

theta coordinates (evaluated at 0) out of the Weierstrass points of C (up to some projective
factor).

ii) Reciprocal of i) [vW98]: knowing 4g theta coordinates (up to some projective factor) of
a hyperelliptic Jacobian evaluated at 0, we can compute the Weierstrass points of the
unique (up to isomorphism) hyperelliptic curve.

iii) Vanishing criteria [Mum84, Cor. 6.7] and [Mum84, Thm. 9.1]: theta functions (of a certain
type) evaluated at 0 tell us whether the underlying principally polarized abelian variety is
the Jacobian of a hyperelliptic curve or not (if not, it might not even be a Jacobian).

iv) In dimension 2: all principally polarized abelian varieties are hyperelliptic Jacobians.

v) In dimension 3: all principally polarized abelian varieties are Jacobians, but can be either
hyperelliptic (minority) or quartic (majority). By iii) we have a criteria to decide on the
nature of the Jacobian, ii) to recover the model of a curve in the hyperelliptic case, and
in the quartic case we have a formula as well to compute a plane model (by computing
bitangents of the underlying curve, seeWeber’s formula [Web76]).

When it comes to the evaluation of the isogeny on points, what we want is: given the theta coor-

dinates (θA1 (P ) : · · · : θAn (P )) ∈ Pn−1 of a point P , compute the theta coordinates (θ
A/G
1 (f(P )) :

· · · : θ
A/G
n (f(P ))) ∈ Pn−1 of f(P ). In dimension 2 over finite fields, there exists the Magma

package AVIsogenies (Bisson, Cosset, Robert) for the conversion Mumford ↔ theta.

3.1 Polarizability of the quotient

Given a principally polarized abelian variety (A,H), one may ask for which finite subgroup G ⊂
A(k) the quotient A/G does admit a principal polarization (compatible with H via the isogeny
A → A/G)? In order to find the answer we need to look at the endomorphism algebra! Recall
that the principal polarization induces an anti-involution on End(A),

(·)† : End(A)→ End(A),

called the Rosati involution. An endomorphism β : A → A is called a real endomorphism if it
is fixed by the Rosati involution, i.e. β† = β. Real endomorphisms form an additive subgroup
denoted by End+(A). The real endomorphisms whose characteristic polynomial’s roots are all
positive are called totally positive real endomorphisms, and are denoted by End++(A). It is a
well known fact that polarizations on A are in bijection with totally positive real endomorphisms,
see e.g. [BL04, Thm. 5.2.4].

Example 3. For an elliptic curve E/Fq, the real endomorphisms are just Z and hence the
polarizations are Z>0.

Note that for a totally positive real endomorphism, kerβ is a symplectic space of order (deg β)2,
where the symplectic pairing arises as a composition of the Weil pairing with β.
We can now state the criteria for the quotient to be principally polarizable.

Lemma 1. Given a principally polarized abelian variety (A,H) and a finite subgroup G ⊂ A(k),
then A/G admits a principal polarization compatible with H under A → A/G if and only if
there exists β ∈ End++(A) such that G ⊂ kerβ is maximal isotropic.
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Note that by the above lemma, G is necessarily of order deg β.

Example 4. For elliptic curves, any cyclic subgroup G ⊂ E(k) (of order ` coprime to the
characteristic of k) is maximal isotropic inside ker[`] = E[`]. Hence, every isogeny from kernel
E → E/G preserves principal polarizability.

3.2 Types of isogenies

Let us fix a dimension g > 1, and let ` be a prime number (different from char(k)). There are
different types of isogenies that have been studied:

- (`, . . . , `)-isogenies, those are the isogenies with kernel isomorphic to (Z/`Z)g. Since the
`-torsion subgroup is exactly A[`] = ker[`] ∼= (Z/`Z)2g, these isogenies are tightly linked to
the real endomorphism [`] ∈ End++(A) by Lemma 1. In some sense they are very “natural”
in that their existence is always guaranteed (and the number of (`, . . . , `)-kernels inside A
can be computed and equals

∏g
i=1(`i + 1)) but it remains incredibly hard to compute

them! (And would be out of scope for this course.) For an algorithm exploiting projective
embeddings and theta functions, see e.g. [CR11], [LR12] or [Rob10]. An implementation
for dimension 2 hyperelliptic Jacobians over finite fields is available in the magma package
AVIsogenies. There are other, notable approaches too, based on the use of abelian functions
(in dimensions 2 and 3), see e.g. [CE15] or [Mil17].

- cyclic isogenies, those are the ones with kernel isomorphic to Z/`Z. The existence of
such isogenies is much more restricted, since the existence of totally positive degree-`
endomorphfisms is not always guaranteed. One has to look at the real endomorphism
algebra K+ = End+(A)⊗Z Q inside K = End(A)⊗Z Q and the splitting behaviour of the
ideal (`) in K+. Attempts for computing such isogenies (for A ordinary and simple) can
be found in [DJRV17] and [Vui20].

The ideas behind the computation of cyclic isogenies are similar to the ideas for the compu-
tation of (`, . . . , `)-isogenies, but there is a major additional difficulty due to polarization
(which is linked to the endomorphism β as opposed to the “natural” endomorphism [`]).
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