Brief introduction to quaternion algebras.
 Notes for the Isogeny-based Cryptography School 2020 in Bristol

Laia Amorós, Aalto University, Finland

July 2021

These notes are a brief introduction to quaternion algebras and their arithmetic. The goal is to give the reader a quick overview about orders and ideals in quaternion algebras over \mathbb{Q} and point towards useful references on the way. For a more detailed approach, the reader can take a look at the classical notes of Marie-France Vignerás Vig80]. A more recent and very complete source for quaternion algebras from all possible points of view is Voi21. For a nice introduction to the arithmetic of quaternion algebras with many examples and explicit computations one can also see AB04. The reader is also encouraged to explore explicit examples of the elements introduced in this text with SageMath ${ }^{1}$.

1 Introduction to quaternion algebras

In 1843, William R. Hamilton came up with an extension of the complex numbers, today called Hamilton quaternions, that is a 4 -dimensional associative algebra over \mathbb{R}. We denote Hamilton quaternions as \mathbb{H}. Frobenius theorem (1877) characterises finite-dimensional associative division algebras over \mathbb{R}. According to this result, every such algebra is isomorphic to one of the following: \mathbb{R}, \mathbb{C} or \mathbb{H}. We can represent a quaternion $h \in \mathbb{H}$ as $h=a+b i+c j+d k$ with $a, b, c, d \in \mathbb{R}$ and $i^{2}=j^{2}=-1$ and $i j=-j i=k$. The story gets more interesting if we consider quaternion algebras over other fields other than \mathbb{R}.

1.1 Basic definitions

Definition 1.1. Let F denote a field of characteristic $\neq 2$. A quaternion algebra over F is a central simple algebra of dimension 4 over F. For $a, b \in F^{\times}$we denote by $\left(\frac{a, b}{F}\right)$ the F-algebra generated by a basis $\{1, i, j, k\}$ such that $i^{2}=a, j^{2}=b$, and $i j=-j i=k$.

A quaternion algebra is either a division algebra (i.e. a non-commutative field), or a matrix algebra.

Example 1.2. The \mathbb{R}-algebra $\left(\frac{-1,-1}{\mathbb{R}}\right)$ is the algebra of (real) Hamilton quaternions \mathbb{H}.
Example 1.3. The ring $\mathrm{M}_{2}(F)$ of 2×2 matrices with coefficients in F is a quaternion algebra over F isomorphic to $\left(\frac{1,1}{F}\right)$ given by: $i \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), j \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

[^0]Quaternion algebras behave well with respect to fields inclusion. If we have a field extension $F \subset F^{\prime}$, then there is a canonical isomorphism

$$
\left(\frac{a, b}{F}\right) \otimes_{F} F^{\prime} \simeq\left(\frac{a, b}{F^{\prime}}\right)
$$

Given a quaternion algebra $B=\left(\frac{a, b}{F}\right)$ over F there is a natural embedding

$$
\begin{array}{lccc}
\lambda: & B & \hookrightarrow & \mathrm{M}_{2}(F(\sqrt{a})) \\
x+y i+z j+t k & \mapsto & \left(\begin{array}{cc}
x+y \sqrt{a} & b(z+t \sqrt{a}) \\
z-t \sqrt{a} & x-y \sqrt{a}
\end{array}\right) . \tag{1}
\end{array}
$$

One can also consider another embedding, which does not favour i over j, but might be inconvenient in some cases.

$$
\begin{array}{lccc}
\lambda^{\prime}: & B & \hookrightarrow & \mathrm{M}_{2}(F(\sqrt{a}, \sqrt{b})) \\
& x+y i+z j+t k & \mapsto & \left.\begin{array}{cc}
x+y \sqrt{a} & \sqrt{b}(z+t \sqrt{a}) \\
\sqrt{b}(z-t \sqrt{a}) & x-y \sqrt{a}
\end{array}\right) .
\end{array}
$$

Thus B can be viewed as a subalgebra of $\mathrm{M}_{2}(\sqrt{a})$.
Definition 1.4. Every quaternion algebra B over F is provided with an F-endomorphism called conjugation and denoted by $\beta \mapsto \bar{\beta}$. If $\beta=x+y i+z j+t k \in B$, with $x, y, z, t \in F$, then $\bar{\beta}=x-y i-z j-t k$. The reduced trace of β is defined as $\operatorname{trd}(\beta)=\beta+\bar{\beta}=2 x$ and the reduced norm of β is defined as $\operatorname{nrd}(\beta)=\beta \bar{\beta}=x^{2}-a y^{2}-b z^{2}+a b t^{2}$.

The reduced norm of B defines a quadratic form (a homogeneous degree 2 polynomial in 4 variables), the norm form of B. The structure of a quaternion algebra is thus related to the properties of its norm form. For example, the norm form of a definite quaternion algebra (see 1.2 below) is positive definite, and its indefinite for an indefinite quaternion algebra. More about this can be found in AB04, Ch. 3].

1.2 Ramification

In order to simplify the exposition of results, we will focus on quaternion algebras over \mathbb{Q}. Let $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ denote a quaternion algebra over \mathbb{Q}, with nonzero $a, b \in \mathbb{Z}$. For any prime p we define $B_{p}:=B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$, for the infinite prime ∞ we define $B_{\infty}:=B \otimes_{\mathbb{Q}} \mathbb{R}$.

Definition 1.5. A quaternion algebra B is ramified or non split at p (resp. at ∞) if B_{p} is a division algebra, and is unramified or split at p (resp. at ∞) if $B_{p} \simeq \mathrm{M}_{2}\left(\mathbb{Q}_{p}\right)$ (resp. $\mathrm{M}_{2}(\mathbb{R})$). If B is ramified at ∞, it is called a definite quaternion algebra. Otherwise is called indefinite.

The reduced discriminant D_{B} of B is the product of all ramified primes in B.
In this notes we are interested in definite quaternion algebras.
Proposition 1.6 (Pizer). Let p be a prime and let $B_{p, \infty}=\left(\frac{a, b}{\mathbb{Q}}\right)$ denote the (definite) quaternion algebra of discriminant $D=p$ over \mathbb{Q}. Then we can choose the following presentation for the algebra:

- $B_{p, \infty}=\left(\frac{-1,-1}{\mathbb{Q}}\right)$ if $p=2$;
- $B_{p, \infty}=\left(\frac{-1,-p}{\mathbb{Q}}\right)$ if $p \equiv 3(\bmod 4)$;
- $B_{p, \infty}=\left(\frac{-2,-p}{\mathbb{Q}}\right)$ if $p \equiv 5(\bmod 8)$;
- $B_{p, \infty}=\left(\frac{-r,-p}{\mathbb{Q}}\right)$ if $p \equiv 1(\bmod 8)$, where r is a prime such that $r \equiv 3(\bmod 4)$ and $\left(\frac{r}{p}\right)=-1$.

Remark 1.7. The quaternion algebra $B_{p, \infty}$ is unique up to isomorphism, and it is only ramified at p and ∞.

2 Arithmetic of quaternion algebras

Like number fields, quaternion algebras come equipped with a rich arithmetic, with the main difference of this being non-commutative. Instead of a unique ring of integers, quaternion algebras can have many, these are known as maximal orders.

2.1 Maximal orders and Eichler orders

Let $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ denote a quaternion algebra with nonzero $a, b \in \mathbb{Z}$. A quaternion $\beta \in B$ is said to be integral over \mathbb{Z} if $\operatorname{nrd}(\beta), \operatorname{trd}(\beta) \in \mathbb{Z}$. Unfortunately, as opposed to the number fields case, when combining all integral elements in B one does not obtain a ring, there are simply too many of them.

Definition 2.1. An order \mathcal{O} over \mathbb{Z} in a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ is a \mathbb{Z}-lattice that is also a subring of B. Equivalently an order $\mathcal{O} \subset B$ over \mathbb{Z} is a subring of B that contains \mathbb{Z}, whose elements are integral over \mathbb{Z} and such that $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}=B$.

More generally, let R denote a ring with field of fractions F, and let B denote a quaternion algebra over F. Then an R-order \mathcal{O} in B is an R-lattice that is also a subring of B.
Example 2.2. The natural order of a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ is defined as $\mathcal{O}=\mathbb{Z}[1, i, j, k]$.
The property of being an order is a local property, i.e. if $\mathcal{O} \subset B$ is an order, then \mathcal{O}_{p} is an order in B_{p}.

Definition 2.3. Let $\mathcal{O}=\mathbb{Z}\left[\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right]$ be a quaternion order, with $\beta_{i} \in B, i=1, \ldots, 4$. The discriminant $\operatorname{disc}(O)$ of \mathcal{O} is defined as the ideal of \mathbb{Z} generated by

$$
\operatorname{det}\left(\operatorname{trd}\left(\beta_{i} \beta_{j}\right)\right)_{i, j=1, \ldots, 4} \subseteq \mathbb{Z}
$$

As \mathbb{Z} is a PID, we can identify the discriminant with a positive generator of the above ideal. $\operatorname{disc}(\mathcal{O})$ is always a square, so we define $\operatorname{discrd}(\mathcal{O})$ by $\operatorname{discrd}(\mathcal{O})^{2}=\operatorname{disc}(\mathcal{O})$. We can measure how big an order is with its discriminant. An order is maximal if it is not properly contained in any other order.

Remark 2.4. To check the maximality of \mathcal{O} one can use the fact that an order \mathcal{O} in B is maximal if and only if $\operatorname{discrd}(\mathcal{O})=D_{B}$ (see [AB04], Prop. 1.50). Note that, unlike in number fields, maximal orders in quaternion algebras are not necessarily unique Vig80, but they all have the same discriminant, which coincides with the discriminant of the algebra.

Given a maximal order \mathcal{O}, we can always conjugate it with any quaternion $\beta \in B^{\times}$and obtain another (possibly the same) order $\beta^{-1} \mathcal{O} \beta$. Two orders $\mathcal{O}, \mathcal{O}^{\prime} \subset B$ are of the same type if they are conjugated by some $\beta \in B^{\times}$. If we consider all maximal quaternion orders up to conjugation in B, we obtain a finite number of conjugacy classes of maximal orders, known as the type number of B.

We can show a basis for a maximal order in the quaternion algebras from Prop. 1.6.
Proposition 2.5 (Piz80, Prop 5.2). Let $B_{p, \infty}$ denote the definite quaternion algebra of discriminant p, where p is a prime. A maximal order of B is given by

- $\mathbb{Z}\left[1, i, j, \frac{1+i+j+k}{2}\right]$, if $p=2$;
- $\mathbb{Z}\left[1, i, \frac{i+j}{2}, \frac{1+k}{2}\right]$, if $p \equiv 3(\bmod 4)$;
- $\mathbb{Z}\left[1, \frac{1+i+j}{2}, j, \frac{2+i+k}{4}\right]$ if $p \equiv 5(\bmod 8)$;
- $\mathbb{Z}\left[1, \frac{1+j}{2}, \frac{j+a k}{2}, k\right]$ if $p \equiv 1(\bmod 8)$, where r is a prime such that $r \equiv 3(\bmod 4)$ and $\left(\frac{r}{p}\right)=-1$.

Another notion worth mentioning is that of Eichler orders.
Definition 2.6. An Eichler order is an order that is the intersection of two maximal orders.
The property of being an Eichler order is also a local property. The following result enlightens why we are interested in these kind of orders. Let \mathbb{Q}_{ℓ} denote the field of ℓ-adic numbers, for some prime integer ℓ.

Proposition 2.7 (Voi21, Prop. 23.4.3]). Consider the quaternion algebra $B=\mathrm{M}_{2}\left(\mathbb{Q}_{\ell}\right)$ and let $\mathcal{O} \subset B$ denote $a \mathbb{Z}_{\ell}$-order. Then the following are equivalent:
(a) \mathcal{O} is an Eichler order;
(b) $\mathcal{O} \simeq\left(\begin{array}{c}\mathbb{Z}_{\ell} \\ \ell^{e} \mathbb{Z}_{\ell} \\ \mathbb{Z}_{\ell} \\ \mathbb{Z}_{\ell}\end{array}\right)$, called the standard order of level ℓ^{e};
(c) \mathcal{O} contains a \mathbb{Z}_{ℓ}-subalgebra that is B^{\times}-conjugate to $\mathcal{O} \simeq\left(\begin{array}{cc}\mathbb{Z}_{\ell} & 0 \\ 0 & \mathbb{Z}_{\ell}\end{array}\right)$;
(d) \mathcal{O} is the intersection of a uniquely determined pair of maximal orders (not necessarily distinct).

This characterisation of Eichler orders in the the local quaternion algebra $B=\mathrm{M}_{2}\left(\mathbb{Q}_{\ell}\right)$ gives rise to a very useful combinatorial construction that keeps track of the containments of orders in $B=\mathrm{M}_{2}\left(\mathbb{Q}_{\ell}\right)$, the so-called Bruhat-Tits tree for $\mathrm{PGL}_{2}\left(\mathbb{Q}_{\ell}\right)$. Supersingular isogeny graphs are closely connected to Bruhat-Tits trees. For a comprehensive review on this connection the reader is referred to $\mathrm{AIL}^{+} 21$.

2.2 Left- right- and two-sided ideals

Let B denote a quaternion algebra over \mathbb{Q}. Every maximal order in B behaves as a non-commutative ring of integers of the quaternion algebra. Ideals are next to be presented. An ideal I of B is a \mathbb{Z}-lattice of rank 4 . They come in different flavours.

Definition 2.8. Let B denote a quaternion algebra over \mathbb{Q} and let \mathcal{O} denote an order of B. An ideal I of B is a left-ideal (resp. right-ideal) of \mathcal{O} if $\mathcal{O} I:=\{x I: x \in \mathcal{O}\} \subset I$ (resp. $I \mathcal{O}:=\{I x:$ $x \in \mathcal{O}\} \subset I)$. If $I \subset \mathcal{O}$ the ideal is an integral ideal of \mathcal{O}.

The reduced norm $\operatorname{nrd}(I)$ of an ideal I is defined as $\operatorname{gcd}\{\operatorname{nrd}(\beta): \beta \in I\}$.
Any ideal $I \subset B$ has two associated orders:

- the left-order of $I: \mathcal{O}_{l}(I):=\{x \in B: x I \subseteq I\} ;$
- the right-order of $I: \mathcal{O}_{r}(I):=\{x \in B: I x \subseteq I\}$. An ideal $I \subset B$ such that $\mathcal{O}_{l}(I)=\mathcal{O}_{r}(I)$ is called a two-sided ideal.

Note that not all ideals are compatible with respect to multiplication. The product $I \cdot J$ of two ideals $I, J \subset B$ makes sense provided that $\mathcal{O}_{r}(I)=\mathcal{O}_{l}(J)$.

We can also consider ideal classes just like in the number fields case.
Definition 2.9. Two ideals $I, J \subset B$ belong to the same left-ideal class (resp. right-ideal class) if there exists $\beta \in B^{\times}$such that $I=J \beta$ (resp. $I=\beta J$). Given a maximal order \mathcal{O}, we denote by $\mathrm{Cl}_{l}(\mathcal{O})$ the set of left-ideal classes of \mathcal{O} (and by $\mathrm{Cl}_{r}(\mathcal{O})$ its set of right-ideal classes).

The number of left-ideal classes of an order \mathcal{O} in B (which could be infinite a priori) is a finite number, and it coincides with the number of right-ideal classes of \mathcal{O}. We call this number the ideal class number of \mathcal{O}. All maximal orders in a quaternion algebra have the same ideal class number. The class number of a quaternion algebra B is the left-ideal class number of a maximal order in B. For more details check Voi21, Ch. 17].

Exercises

Exercise 1. The elements $a, b \in F^{\times}$are not unique in determining the isomorphism class of a quaternion algebra.
(i) Show that

$$
\left(\frac{a, b}{F}\right) \simeq\left(\frac{a,-a b}{F}\right) \simeq\left(\frac{b,-a b}{F}\right) .
$$

(ii) Let $c, d \in F^{\times}$. Show that

$$
\left(\frac{a, b}{F}\right) \simeq\left(\frac{a c^{2}, b d^{2}}{F}\right)
$$

This shows, in particular, that any quaternion algebra B over \mathbb{Q} is isomorphic to ($\frac{a, b}{\mathbb{Q}}$) for some $a, b \in \mathbb{Z}$.
Hint: You might want to use the Hilbert symbol (cf. Voi21, 12.4]).
Exercise 2. Show that a quaternion algebra $B=\left(\frac{a, b}{\mathbb{Q}}\right)$ is definite if and only if $a, b<0$, where $a, b \in \mathbb{Z}$.
Exercise 3. Show that, for any $\beta \in B$ we have $\operatorname{trd}(\beta)=\operatorname{Tr}(\lambda(\beta))=\operatorname{Tr}\left(\lambda^{\prime}(\beta)\right)$ and $\operatorname{nrd}(\beta)=$ $\operatorname{det}(\lambda(\beta))=\operatorname{det}\left(\lambda^{\prime}(\beta)\right)$.
Exercise 4. Consider the quaternion algebra $B=\left(\frac{-1,-1}{\mathbb{Q}}\right)$. Prove that the order $\mathbb{Z}[1, i, j, k]$ is not maximal. Prove that $\mathbb{Z}\left[1, i, j, \frac{1+i+j+k}{2}\right]$ is maximal. This order is known as the Hurwitz order.

Exercise 5 (Units). The units of an order \mathcal{O} of a quaternion algebra over some field F are the elements $u \in \mathcal{O}$ such that its inverse is also in \mathcal{O}. They form a group denoted by \mathcal{O}^{\times}. The units with reduced norm 1 form a subgroup in \mathcal{O}^{\times}denoted by \mathcal{O}^{1}.
(i) Show that an element in \mathcal{O} is a unit if and only if its reduced norm is a unit in \mathbb{Z}_{F}, the ring of integers of F.
(ii) Compute the units of the Hurwitz order.

Exercise 6. Choose a quaternion algebra with prime discriminant and compute a maximal order \mathcal{O}. Use Sage to compute a representative for every left ideal class of \mathcal{O} and then compute the right orders for this ideals. (Note: If the discriminant is very small you might only have one ideal class.)

References

[AB04] Montserrat Alsina and Pilar Bayer, Quaternion orders, quadratic forms, and shimura curves (American Math. Soc., ed.), Providence, RI, vol. 22, CRM Monograph Series, 2004. 1(document), 1.1, 2.4
$\left[\mathrm{AIL}^{+} 21\right]$ Laia Amorós, Annamaria Iezzi, Kristin Lauter, Chloe Martindale, and Jana Sotáková, Explicit connections between supersingular isogeny graphs and bruhat-tits trees, Women in Numbers Europe III: Research Directions in Number Theory (2021). 12.1
[Piz80] Arnold Pizer, An algorithm for computing modular forms on $\gamma_{0}(n)$, Journal of Algebra Vol. 64, Issue 2 (1980). $\sqrt{2.5}$
[Vig80] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, 1980. (document) 2.4
[Voi21] John Voight, Quaternion algebras, Graduate Texts in Mathematics, vol. 288, Springer International Publishing, 2021. https://math.dartmouth.edu/~jvoight/quat.html. 1(document), 2.7, 2.2, 1

[^0]: ${ }^{1}$ https://doc.sagemath.org/html/en/reference/quat_algebras/index.html

