Brief introduction to quaternion algebras. Notes for the Isogeny-based Cryptography School 2020 in Bristol

Laia Amorós, Aalto University, Finland

July 2021

These notes are a brief introduction to quaternion algebras and their arithmetic. The goal is to give the reader a quick overview about orders and ideals in quaternion algebras over \mathbb{Q} and point towards useful references on the way. For a more detailed approach, the reader can take a look at the classical notes of Marie-France Vignerás [Vig80]. A more recent and very complete source for quaternion algebras from all possible points of view is [Voi21]. For a nice introduction to the arithmetic of quaternion algebras with many examples and explicit computations one can also see [AB04]. The reader is also encouraged to explore explicit examples of the elements introduced in this text with SageMath ¹.

1 Introduction to quaternion algebras

In 1843, William R. Hamilton came up with an extension of the complex numbers, today called *Hamilton quaternions*, that is a 4-dimensional associative algebra over \mathbb{R} . We denote Hamilton quaternions as \mathbb{H} . Frobenius theorem (1877) characterises finite-dimensional associative division algebras over \mathbb{R} . According to this result, every such algebra is isomorphic to one of the following: \mathbb{R} , \mathbb{C} or \mathbb{H} . We can represent a quaternion $h \in \mathbb{H}$ as h = a + bi + cj + dk with $a, b, c, d \in \mathbb{R}$ and $i^2 = j^2 = -1$ and ij = -ji = k. The story gets more interesting if we consider quaternion algebras over other fields other than \mathbb{R} .

1.1 Basic definitions

Definition 1.1. Let F denote a field of characteristic $\neq 2$. A quaternion algebra over F is a central simple algebra of dimension 4 over F. For $a, b \in F^{\times}$ we denote by $\begin{pmatrix} a, b \\ F \end{pmatrix}$ the F-algebra generated by a basis $\{1, i, j, k\}$ such that $i^2 = a, j^2 = b$, and ij = -ji = k.

A quaternion algebra is either a division algebra (i.e. a non-commutative field), or a matrix algebra.

Example 1.2. The \mathbb{R} -algebra $\left(\frac{-1,-1}{\mathbb{R}}\right)$ is the algebra of (real) Hamilton quaternions \mathbb{H} .

Example 1.3. The ring $M_2(F)$ of 2×2 matrices with coefficients in F is a quaternion algebra over F isomorphic to $\begin{pmatrix} 1,1\\ \overline{F} \end{pmatrix}$ given by: $i \mapsto \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \ j \mapsto \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$.

¹https://doc.sagemath.org/html/en/reference/quat_algebras/index.html

Quaternion algebras behave well with respect to fields inclusion. If we have a field extension $F \subset F'$, then there is a canonical isomorphism

$$\left(\frac{a,b}{F}\right)\otimes_F F' \simeq \left(\frac{a,b}{F'}\right).$$

Given a quaternion algebra $B = \left(\frac{a,b}{F}\right)$ over F there is a natural embedding

$$\begin{aligned}
\lambda : & B & \hookrightarrow & M_2(F(\sqrt{a})) \\
& x + yi + zj + tk & \mapsto & \begin{pmatrix} x + y\sqrt{a} & b(z + t\sqrt{a}) \\
z - t\sqrt{a} & x - y\sqrt{a} \end{pmatrix}.
\end{aligned}$$
(1)

One can also consider another embedding, which does not favour i over j, but might be inconvenient in some cases.

$$\begin{array}{rccc} \lambda': & B & \hookrightarrow & \operatorname{M}_2(F(\sqrt{a},\sqrt{b})) \\ & x+yi+zj+tk & \mapsto & \begin{pmatrix} x+y\sqrt{a} & \sqrt{b}(z+t\sqrt{a}) \\ \sqrt{b}(z-t\sqrt{a}) & x-y\sqrt{a} \end{pmatrix}. \end{array}$$

Thus B can be viewed as a subalgebra of $M_2(\sqrt{a})$.

Definition 1.4. Every quaternion algebra B over F is provided with an F-endomorphism called conjugation and denoted by $\beta \mapsto \overline{\beta}$. If $\beta = x + yi + zj + tk \in B$, with $x, y, z, t \in F$, then $\overline{\beta} = x - yi - zj - tk$. The reduced trace of β is defined as $\operatorname{trd}(\beta) = \beta + \overline{\beta} = 2x$ and the reduced norm of β is defined as $\operatorname{nrd}(\beta) = \beta \overline{\beta} = x^2 - ay^2 - bz^2 + abt^2$.

The reduced norm of B defines a quadratic form (a homogeneous degree 2 polynomial in 4 variables), the *norm form of B*. The structure of a quaternion algebra is thus related to the properties of its norm form. For example, the norm form of a definite quaternion algebra (see 1.2 below) is positive definite, and its indefinite for an indefinite quaternion algebra. More about this can be found in [AB04, Ch. 3].

1.2 Ramification

In order to simplify the exposition of results, we will focus on quaternion algebras over \mathbb{Q} . Let $B = \begin{pmatrix} a, b \\ \mathbb{Q} \end{pmatrix}$ denote a quaternion algebra over \mathbb{Q} , with nonzero $a, b \in \mathbb{Z}$. For any prime p we define $B_p := B \otimes_{\mathbb{Q}} \mathbb{Q}_p$, for the *infinite prime* ∞ we define $B_\infty := B \otimes_{\mathbb{Q}} \mathbb{R}$.

Definition 1.5. A quaternion algebra B is ramified or non split at p (resp. at ∞) if B_p is a division algebra, and is unramified or split at p (resp. at ∞) if $B_p \simeq M_2(\mathbb{Q}_p)$ (resp. $M_2(\mathbb{R})$). If B is ramified at ∞ , it is called a *definite* quaternion algebra. Otherwise is called *indefinite*.

The reduced discriminant D_B of B is the product of all ramified primes in B.

In this notes we are interested in definite quaternion algebras.

Proposition 1.6 (Pizer). Let p be a prime and let $B_{p,\infty} = \begin{pmatrix} a,b \\ \mathbb{Q} \end{pmatrix}$ denote the (definite) quaternion algebra of discriminant D = p over \mathbb{Q} . Then we can choose the following presentation for the algebra:

$$B_{p,\infty} = \begin{pmatrix} -1,-1 \\ \mathbb{Q} \end{pmatrix} \text{ if } p = 2;
- B_{p,\infty} = \begin{pmatrix} -1,-p \\ \mathbb{Q} \end{pmatrix} \text{ if } p \equiv 3 \pmod{4};
- B_{p,\infty} = \begin{pmatrix} -2,-p \\ \mathbb{Q} \end{pmatrix} \text{ if } p \equiv 5 \pmod{8};
- B_{p,\infty} = \begin{pmatrix} -r,-p \\ \mathbb{Q} \end{pmatrix} \text{ if } p \equiv 1 \pmod{8}, \text{ where } r \text{ is a prime such that } r \equiv 3 \pmod{4} \text{ and } \left(\frac{r}{p}\right) = -1.$$

Remark 1.7. The quaternion algebra $B_{p,\infty}$ is unique up to isomorphism, and it is only ramified at p and ∞ .

2 Arithmetic of quaternion algebras

Like number fields, quaternion algebras come equipped with a rich arithmetic, with the main difference of this being non-commutative. Instead of a unique ring of integers, quaternion algebras can have many, these are known as maximal orders.

2.1 Maximal orders and Eichler orders

Let $B = \begin{pmatrix} a, b \\ \overline{\mathbb{Q}} \end{pmatrix}$ denote a quaternion algebra with nonzero $a, b \in \mathbb{Z}$. A quaternion $\beta \in B$ is said to be *integral* over \mathbb{Z} if $\operatorname{nrd}(\beta), \operatorname{trd}(\beta) \in \mathbb{Z}$. Unfortunately, as opposed to the number fields case, when combining all integral elements in B one does not obtain a ring, there are simply too many of them.

Definition 2.1. An order \mathcal{O} over \mathbb{Z} in a quaternion algebra $B = \begin{pmatrix} \underline{a}, \underline{b} \\ \mathbb{Q} \end{pmatrix}$ is a \mathbb{Z} -lattice that is also a subring of B. Equivalently an order $\mathcal{O} \subset B$ over \mathbb{Z} is a subring of B that contains \mathbb{Z} , whose elements are integral over \mathbb{Z} and such that $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q} = B$.

More generally, let R denote a ring with field of fractions F, and let B denote a quaternion algebra over F. Then an R-order \mathcal{O} in B is an R-lattice that is also a subring of B.

Example 2.2. The *natural* order of a quaternion algebra $B = \left(\frac{a,b}{\mathbb{Q}}\right)$ is defined as $\mathcal{O} = \mathbb{Z}[1,i,j,k]$.

The property of being an order is a local property, i.e. if $\mathcal{O} \subset B$ is an order, then \mathcal{O}_p is an order in B_p .

Definition 2.3. Let $\mathcal{O} = \mathbb{Z}[\beta_1, \beta_2, \beta_3, \beta_4]$ be a quaternion order, with $\beta_i \in B$, i = 1, ..., 4. The discriminant disc(O) of \mathcal{O} is defined as the ideal of \mathbb{Z} generated by

$$\det(\operatorname{trd}(\beta_i\beta_j))_{i,j=1,\ldots,4} \subseteq \mathbb{Z}.$$

As \mathbb{Z} is a PID, we can identify the discriminant with a positive generator of the above ideal. disc(\mathcal{O}) is always a square, so we define discrd(\mathcal{O}) by discrd(\mathcal{O})² = disc(\mathcal{O}). We can measure how *big* an order is with its discriminant. An order is *maximal* if it is not properly contained in any other order.

Remark 2.4. To check the maximality of \mathcal{O} one can use the fact that an order \mathcal{O} in B is maximal if and only if discrd(\mathcal{O}) = D_B (see [AB04], Prop. 1.50). Note that, unlike in number fields, maximal orders in quaternion algebras are not necessarily unique [Vig80], but they all have the same discriminant, which coincides with the discriminant of the algebra.

Given a maximal order \mathcal{O} , we can always conjugate it with any quaternion $\beta \in B^{\times}$ and obtain another (possibly the same) order $\beta^{-1}\mathcal{O}\beta$. Two orders $\mathcal{O}, \mathcal{O}' \subset B$ are of the same type if they are conjugated by some $\beta \in B^{\times}$. If we consider all maximal quaternion orders up to conjugation in B, we obtain a finite number of conjugacy classes of maximal orders, known as the type number of B.

We can show a basis for a maximal order in the quaternion algebras from Prop. 1.6.

Proposition 2.5 ([Piz80], Prop 5.2). Let $B_{p,\infty}$ denote the definite quaternion algebra of discriminant p, where p is a prime. A maximal order of B is given by - $\mathbb{Z}[1, i, j, \frac{1+i+j+k}{2}]$, if p = 2;

- $\mathbb{Z}[1, i, j, \frac{2}{2}], ij p = 2,$ $\mathbb{Z}[1, i, \frac{i+j}{2}, \frac{1+k}{2}], if p \equiv 3 \pmod{4};$ $\mathbb{Z}[1, \frac{1+i+j}{2}, j, \frac{2+i+k}{4}] if p \equiv 5 \pmod{8};$ $\mathbb{Z}[1, \frac{1+j}{2}, \frac{j+ak}{2}, k] if p \equiv 1 \pmod{8}, where r is a prime such that <math>r \equiv 3 \pmod{4}$ and $\left(\frac{r}{p}\right) = -1.$

Another notion worth mentioning is that of Eichler orders.

Definition 2.6. An *Eichler order* is an order that is the intersection of two maximal orders.

The property of being an Eichler order is also a local property. The following result enlightens why we are interested in these kind of orders. Let \mathbb{Q}_{ℓ} denote the field of ℓ -adic numbers, for some prime integer ℓ .

Proposition 2.7 ([Voi21, Prop. 23.4.3]). Consider the quaternion algebra $B = M_2(\mathbb{Q}_\ell)$ and let $\mathcal{O} \subset B$ denote a \mathbb{Z}_{ℓ} -order. Then the following are equivalent:

- (a) \mathcal{O} is an Eichler order;
- (b) $\mathcal{O} \simeq \begin{pmatrix} \mathbb{Z}_{\ell} & \mathbb{Z}_{\ell} \\ \ell^e \mathbb{Z}_{\ell} & \mathbb{Z}_{\ell} \end{pmatrix}$, called the standard order of level ℓ^e ;
- (c) \mathcal{O} contains a \mathbb{Z}_{ℓ} -subalgebra that is B^{\times} -conjugate to $\mathcal{O} \simeq \begin{pmatrix} \mathbb{Z}_{\ell} & 0\\ 0 & \mathbb{Z}_{\ell} \end{pmatrix};$
- (d) \mathcal{O} is the intersection of a uniquely determined pair of maximal orders (not necessarily distinct).

This characterisation of Eichler orders in the local quaternion algebra $B = M_2(\mathbb{Q}_\ell)$ gives rise to a very useful combinatorial construction that keeps track of the containments of orders in $B = M_2(\mathbb{Q}_\ell)$, the so-called Bruhat-Tits tree for $PGL_2(\mathbb{Q}_\ell)$. Supersingular isogeny graphs are closely connected to Bruhat-Tits trees. For a comprehensive review on this connection the reader is referred to $[AIL^+21]$.

2.2Left- right- and two-sided ideals

Let B denote a quaternion algebra over \mathbb{Q} . Every maximal order in B behaves as a non-commutative ring of integers of the quaternion algebra. Ideals are next to be presented. An *ideal* I of B is a Z-lattice of rank 4. They come in different flavours.

Definition 2.8. Let B denote a quaternion algebra over \mathbb{Q} and let \mathcal{O} denote an order of B. An ideal I of B is a left-ideal (resp. right-ideal) of \mathcal{O} if $\mathcal{O}I := \{xI : x \in \mathcal{O}\} \subset I$ (resp. $I\mathcal{O} := \{Ix : x \in \mathcal{O}\}$ $x \in \mathcal{O} \} \subset I$). If $I \subset \mathcal{O}$ the ideal is an *integral* ideal of \mathcal{O} .

The reduced norm $\operatorname{nrd}(I)$ of an ideal I is defined as $\operatorname{gcd}\{\operatorname{nrd}(\beta) : \beta \in I\}$.

Any ideal $I \subset B$ has two associated orders:

- the *left-order* of $I: \mathcal{O}_l(I) := \{x \in B : xI \subseteq I\};$

- the right-order of I: $\mathcal{O}_r(I) := \{x \in B : Ix \subseteq I\}.$

An ideal $I \subset B$ such that $\mathcal{O}_l(I) = \mathcal{O}_r(I)$ is called a *two-sided* ideal.

Note that not all ideals are compatible with respect to multiplication. The product $I \cdot J$ of two ideals $I, J \subset B$ makes sense provided that $\mathcal{O}_r(I) = \mathcal{O}_l(J)$.

We can also consider ideal classes just like in the number fields case.

Definition 2.9. Two ideals $I, J \subset B$ belong to the same *left-ideal class* (resp. *right-ideal class*) if there exists $\beta \in B^{\times}$ such that $I = J\beta$ (resp. $I = \beta J$). Given a maximal order \mathcal{O} , we denote by $\operatorname{Cl}_{l}(\mathcal{O})$ the set of *left-ideal classes of* \mathcal{O} (and by $\operatorname{Cl}_{r}(\mathcal{O})$ its set of *right-ideal classes*).

The number of left-ideal classes of an order \mathcal{O} in B (which could be infinite a priori) is a finite number, and it coincides with the number of right-ideal classes of \mathcal{O} . We call this number the *ideal class number of* \mathcal{O} . All maximal orders in a quaternion algebra have the same ideal class number. The *class number* of a quaternion algebra B is the left-ideal class number of a maximal order in B. For more details check [Voi21, Ch. 17].

Exercises

Exercise 1. The elements $a, b \in F^{\times}$ are not unique in determining the isomorphism class of a quaternion algebra.

(i) Show that

$$\left(\frac{a,b}{F}\right) \simeq \left(\frac{a,-ab}{F}\right) \simeq \left(\frac{b,-ab}{F}\right)$$

(*ii*) Let $c, d \in F^{\times}$. Show that

$$\left(\frac{a,b}{F}\right) \simeq \left(\frac{ac^2,bd^2}{F}\right).$$

This shows, in particular, that any quaternion algebra B over \mathbb{Q} is isomorphic to $\begin{pmatrix} a,b\\ \mathbb{Q} \end{pmatrix}$ for some $a, b \in \mathbb{Z}$.

Hint: You might want to use the *Hilbert symbol* (cf. [Voi21, 12.4]).

Exercise 2. Show that a quaternion algebra $B = \left(\frac{a,b}{\mathbb{Q}}\right)$ is definite if and only if a, b < 0, where $a, b \in \mathbb{Z}$.

Exercise 3. Show that, for any $\beta \in B$ we have $\operatorname{trd}(\beta) = \operatorname{Tr}(\lambda(\beta)) = \operatorname{Tr}(\lambda'(\beta))$ and $\operatorname{nrd}(\beta) = \det(\lambda(\beta)) = \det(\lambda'(\beta))$.

Exercise 4. Consider the quaternion algebra $B = \begin{pmatrix} -1, -1 \\ \mathbb{Q} \end{pmatrix}$. Prove that the order $\mathbb{Z}[1, i, j, k]$ is not maximal. Prove that $\mathbb{Z}[1, i, j, \frac{1+i+j+k}{2}]$ is maximal. This order is known as the *Hurwitz order*.

Exercise 5 (Units). The *units* of an order \mathcal{O} of a quaternion algebra over some field F are the elements $u \in \mathcal{O}$ such that its inverse is also in \mathcal{O} . They form a group denoted by \mathcal{O}^{\times} . The units with reduced norm 1 form a subgroup in \mathcal{O}^{\times} denoted by \mathcal{O}^{1} .

(i) Show that an element in \mathcal{O} is a unit if and only if its reduced norm is a unit in \mathbb{Z}_F , the ring of integers of F.

(ii) Compute the units of the Hurwitz order.

Exercise 6. Choose a quaternion algebra with prime discriminant and compute a maximal order \mathcal{O} . Use Sage to compute a representative for every left ideal class of \mathcal{O} and then compute the right orders for this ideals. (Note: If the discriminant is very small you might only have one ideal class.)

References

- [AB04] Montserrat Alsina and Pilar Bayer, Quaternion orders, quadratic forms, and shimura curves (American Math. Soc., ed.), Providence, RI, vol. 22, CRM Monograph Series, 2004. ↑(document), 1.1, 2.4
- [AIL⁺21] Laia Amorós, Annamaria Iezzi, Kristin Lauter, Chloe Martindale, and Jana Sotáková, Explicit connections between supersingular isogeny graphs and bruhat-tits trees, Women in Numbers Europe III: Research Directions in Number Theory (2021). ↑2.1
 - [Piz80] Arnold Pizer, An algorithm for computing modular forms on $\gamma_0(n)$, Journal of Algebra Vol. 64, Issue 2 (1980). $\uparrow 2.5$
 - [Vig80] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, 1980. ↑(document), 2.4
 - [Voi21] John Voight, Quaternion algebras, Graduate Texts in Mathematics, vol. 288, Springer International Publishing, 2021. https://math.dartmouth.edu/~jvoight/quat.html. ↑(document), 2.7, 2.2, 1