
Brief introduction to quaternion algebras.

Notes for the Isogeny-based Cryptography School 2020 in Bristol

Laia Amorós, Aalto University, Finland

July 2021

These notes are a brief introduction to quaternion algebras and their arithmetic. The goal is to
give the reader a quick overview about orders and ideals in quaternion algebras over Q and point
towards useful references on the way. For a more detailed approach, the reader can take a look
at the classical notes of Marie-France Vignerás [Vig80]. A more recent and very complete source
for quaternion algebras from all possible points of view is [Voi21]. For a nice introduction to the
arithmetic of quaternion algebras with many examples and explicit computations one can also see
[AB04]. The reader is also encouraged to explore explicit examples of the elements introduced in
this text with SageMath 1.

1 Introduction to quaternion algebras

In 1843, William R. Hamilton came up with an extension of the complex numbers, today called
Hamilton quaternions, that is a 4-dimensional associative algebra over R. We denote Hamilton
quaternions as H. Frobenius theorem (1877) characterises finite-dimensional associative division
algebras over R. According to this result, every such algebra is isomorphic to one of the following:
R, C or H. We can represent a quaternion h ∈ H as h = a + bi + cj + dk with a, b, c, d ∈ R and
i2 = j2 = −1 and ij = −ji = k. The story gets more interesting if we consider quaternion algebras
over other fields other than R.

1.1 Basic definitions

Definition 1.1. Let F denote a field of characteristic 6= 2. A quaternion algebra over F is a central

simple algebra of dimension 4 over F . For a, b ∈ F× we denote by
(
a,b
F

)
the F -algebra generated

by a basis {1, i, j, k} such that i2 = a, j2 = b, and ij = −ji = k.

A quaternion algebra is either a division algebra (i.e. a non-commutative field), or a matrix
algebra.

Example 1.2. The R-algebra
(
−1,−1

R

)
is the algebra of (real) Hamilton quaternions H.

Example 1.3. The ring M2(F ) of 2×2 matrices with coefficients in F is a quaternion algebra over

F isomorphic to
(
1,1
F

)
given by: i 7→

(
1 0
0 −1

)
, j 7→ ( 0 1

1 0 ).

1https://doc.sagemath.org/html/en/reference/quat_algebras/index.html
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Quaternion algebras behave well with respect to fields inclusion. If we have a field extension
F ⊂ F ′, then there is a canonical isomorphism(

a, b

F

)
⊗F F

′ '
(
a, b

F ′

)
.

Given a quaternion algebra B =
(
a,b
F

)
over F there is a natural embedding

λ : B ↪→ M2(F (
√
a))

x+ yi+ zj + tk 7→
(
x+ y

√
a b(z + t

√
a)

z − t
√
a x− y

√
a

)
.

(1)

One can also consider another embedding, which does not favour i over j, but might be inconvenient
in some cases.

λ′ : B ↪→ M2(F (
√
a,
√
b))

x+ yi+ zj + tk 7→
(

x+ y
√
a

√
b(z + t

√
a)√

b(z − t
√
a) x− y

√
a

)
.

Thus B can be viewed as a subalgebra of M2(
√
a).

Definition 1.4. Every quaternion algebra B over F is provided with an F -endomorphism called
conjugation and denoted by β 7→ β. If β = x + yi + zj + tk ∈ B, with x, y, z, t ∈ F , then
β = x − yi − zj − tk. The reduced trace of β is defined as trd(β) = β + β = 2x and the reduced
norm of β is defined as nrd(β) = ββ = x2 − ay2 − bz2 + abt2.

The reduced norm of B defines a quadratic form (a homogeneous degree 2 polynomial in 4
variables), the norm form of B. The structure of a quaternion algebra is thus related to the
properties of its norm form. For example, the norm form of a definite quaternion algebra (see 1.2
below) is positive definite, and its indefinite for an indefinite quaternion algebra. More about this
can be found in [AB04, Ch. 3].

1.2 Ramification

In order to simplify the exposition of results, we will focus on quaternion algebras over Q. Let

B =
(
a,b
Q

)
denote a quaternion algebra over Q, with nonzero a, b ∈ Z. For any prime p we define

Bp := B ⊗Q Qp, for the infinite prime ∞ we define B∞ := B ⊗Q R.

Definition 1.5. A quaternion algebra B is ramified or non split at p (resp. at ∞) if Bp is a
division algebra, and is unramified or split at p (resp. at ∞) if Bp ' M2(Qp) (resp. M2(R)). If B
is ramified at ∞, it is called a definite quaternion algebra. Otherwise is called indefinite.

The reduced discriminant DB of B is the product of all ramified primes in B.

In this notes we are interested in definite quaternion algebras.

Proposition 1.6 (Pizer). Let p be a prime and let Bp,∞ =
(
a,b
Q

)
denote the (definite) quaternion

algebra of discriminant D = p over Q. Then we can choose the following presentation for the
algebra:
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- Bp,∞ =
(
−1,−1

Q

)
if p = 2;

- Bp,∞ =
(
−1,−p

Q

)
if p ≡ 3 (mod 4);

- Bp,∞ =
(
−2,−p

Q

)
if p ≡ 5 (mod 8);

- Bp,∞ =
(
−r,−p

Q

)
if p ≡ 1 (mod 8), where r is a prime such that r ≡ 3 (mod 4) and

(
r
p

)
= −1.

Remark 1.7. The quaternion algebra Bp,∞ is unique up to isomorphism, and it is only ramified
at p and ∞.

2 Arithmetic of quaternion algebras

Like number fields, quaternion algebras come equipped with a rich arithmetic, with the main
difference of this being non-commutative. Instead of a unique ring of integers, quaternion algebras
can have many, these are known as maximal orders.

2.1 Maximal orders and Eichler orders

Let B =
(
a,b
Q

)
denote a quaternion algebra with nonzero a, b ∈ Z. A quaternion β ∈ B is said

to be integral over Z if nrd(β), trd(β) ∈ Z. Unfortunately, as opposed to the number fields case,
when combining all integral elements in B one does not obtain a ring, there are simply too many
of them.

Definition 2.1. An order O over Z in a quaternion algebra B =
(
a,b
Q

)
is a Z-lattice that is also

a subring of B. Equivalently an order O ⊂ B over Z is a subring of B that contains Z, whose
elements are integral over Z and such that O ⊗Z Q = B.

More generally, let R denote a ring with field of fractions F , and let B denote a quaternion
algebra over F . Then an R-order O in B is an R-lattice that is also a subring of B.

Example 2.2. The natural order of a quaternion algebra B =
(
a,b
Q

)
is defined as O = Z[1, i, j, k].

The property of being an order is a local property, i.e. if O ⊂ B is an order, then Op is an order
in Bp.

Definition 2.3. Let O = Z[β1, β2, β3, β4] be a quaternion order, with βi ∈ B, i = 1, . . . , 4. The
discriminant disc(O) of O is defined as the ideal of Z generated by

det(trd(βiβj))i,j=1,...,4 ⊆ Z.

As Z is a PID, we can identify the discriminant with a positive generator of the above ideal.
disc(O) is always a square, so we define discrd(O) by discrd(O)2 = disc(O). We can measure how
big an order is with its discriminant. An order is maximal if it is not properly contained in any
other order.

Remark 2.4. To check the maximality of O one can use the fact that an order O in B is maximal
if and only if discrd(O) = DB (see [AB04], Prop. 1.50). Note that, unlike in number fields,
maximal orders in quaternion algebras are not necessarily unique [Vig80], but they all have the
same discriminant, which coincides with the discriminant of the algebra.
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Given a maximal order O, we can always conjugate it with any quaternion β ∈ B× and obtain
another (possibly the same) order β−1Oβ. Two orders O,O′ ⊂ B are of the same type if they are
conjugated by some β ∈ B×. If we consider all maximal quaternion orders up to conjugation in B,
we obtain a finite number of conjugacy classes of maximal orders, known as the type number of B.

We can show a basis for a maximal order in the quaternion algebras from Prop. 1.6.

Proposition 2.5 ([Piz80], Prop 5.2). Let Bp,∞ denote the definite quaternion algebra of discrimi-
nant p, where p is a prime. A maximal order of B is given by

- Z[1, i, j, 1+i+j+k
2 ], if p = 2;

- Z[1, i, i+j
2 , 1+k

2 ], if p ≡ 3 (mod 4);

- Z[1, 1+i+j
2 , j, 2+i+k

4 ] if p ≡ 5 (mod 8);

- Z[1, 1+j
2 , j+ak

2 , k] if p ≡ 1 (mod 8), where r is a prime such that r ≡ 3 (mod 4) and
(
r
p

)
= −1.

Another notion worth mentioning is that of Eichler orders.

Definition 2.6. An Eichler order is an order that is the intersection of two maximal orders.

The property of being an Eichler order is also a local property. The following result enlightens
why we are interested in these kind of orders. Let Q` denote the field of `-adic numbers, for some
prime integer `.

Proposition 2.7 ([Voi21, Prop. 23.4.3]). Consider the quaternion algebra B = M2(Q`) and let
O ⊂ B denote a Z`-order. Then the following are equivalent:

(a) O is an Eichler order;

(b) O '
(

Z` Z`
`eZ` Z`

)
, called the standard order of level `e;

(c) O contains a Z`-subalgebra that is B×-conjugate to O '
(

Z` 0
0 Z`

)
;

(d) O is the intersection of a uniquely determined pair of maximal orders (not necessarily dis-
tinct).

This characterisation of Eichler orders in the the local quaternion algebra B = M2(Q`) gives
rise to a very useful combinatorial construction that keeps track of the containments of orders
in B = M2(Q`), the so-called Bruhat-Tits tree for PGL2(Q`). Supersingular isogeny graphs are
closely connected to Bruhat-Tits trees. For a comprehensive review on this connection the reader
is referred to [AIL+21].

2.2 Left- right- and two-sided ideals

Let B denote a quaternion algebra over Q. Every maximal order in B behaves as a non-commutative
ring of integers of the quaternion algebra. Ideals are next to be presented. An ideal I of B is a
Z-lattice of rank 4. They come in different flavours.

Definition 2.8. Let B denote a quaternion algebra over Q and let O denote an order of B. An
ideal I of B is a left-ideal (resp. right-ideal) of O if OI := {xI : x ∈ O} ⊂ I (resp. IO := {Ix :
x ∈ O} ⊂ I). If I ⊂ O the ideal is an integral ideal of O.

The reduced norm nrd(I) of an ideal I is defined as gcd{nrd(β) : β ∈ I}.
Any ideal I ⊂ B has two associated orders:
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- the left-order of I: Ol(I) := {x ∈ B : xI ⊆ I};
- the right-order of I: Or(I) := {x ∈ B : Ix ⊆ I}.

An ideal I ⊂ B such that Ol(I) = Or(I) is called a two-sided ideal.

Note that not all ideals are compatible with respect to multiplication. The product I · J of two
ideals I, J ⊂ B makes sense provided that Or(I) = Ol(J).

We can also consider ideal classes just like in the number fields case.

Definition 2.9. Two ideals I, J ⊂ B belong to the same left-ideal class (resp. right-ideal class)
if there exists β ∈ B× such that I = Jβ (resp. I = βJ). Given a maximal order O, we denote by
Cll(O) the set of left-ideal classes of O (and by Clr(O) its set of right-ideal classes).

The number of left-ideal classes of an order O in B (which could be infinite a priori) is a finite
number, and it coincides with the number of right-ideal classes of O. We call this number the ideal
class number of O. All maximal orders in a quaternion algebra have the same ideal class number.
The class number of a quaternion algebra B is the left-ideal class number of a maximal order in
B. For more details check [Voi21, Ch. 17].

Exercises

Exercise 1. The elements a, b ∈ F× are not unique in determining the isomorphism class of a
quaternion algebra.

(i) Show that (
a, b

F

)
'

(
a,−ab
F

)
'

(
b,−ab
F

)
.

(ii) Let c, d ∈ F×. Show that (
a, b

F

)
'

(
ac2, bd2

F

)
.

This shows, in particular, that any quaternion algebra B over Q is isomorphic to
(
a,b
Q

)
for

some a, b ∈ Z.
Hint: You might want to use the Hilbert symbol (cf. [Voi21, 12.4]).

Exercise 2. Show that a quaternion algebra B =
(
a,b
Q

)
is definite if and only if a, b < 0, where

a, b ∈ Z.

Exercise 3. Show that, for any β ∈ B we have trd(β) = Tr(λ(β)) = Tr(λ′(β)) and nrd(β) =
det(λ(β)) = det(λ′(β)).

Exercise 4. Consider the quaternion algebra B =
(
−1,−1

Q

)
. Prove that the order Z[1, i, j, k] is not

maximal. Prove that Z[1, i, j, 1+i+j+k
2 ] is maximal. This order is known as the Hurwitz order.

Exercise 5 (Units). The units of an order O of a quaternion algebra over some field F are the
elements u ∈ O such that its inverse is also in O. They form a group denoted by O×. The units
with reduced norm 1 form a subgroup in O× denoted by O1.

(i) Show that an element in O is a unit if and only if its reduced norm is a unit in ZF , the ring
of integers of F .
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(ii) Compute the units of the Hurwitz order.

Exercise 6. Choose a quaternion algebra with prime discriminant and compute a maximal order
O. Use Sage to compute a representative for every left ideal class of O and then compute the right
orders for this ideals. (Note: If the discriminant is very small you might only have one ideal class.)
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