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The goal of this document is to introduce the two isogeny-based signature
schemes GPS and SQISign. Most of the content of these notes is extracted from
the articles that first introduced these two constructions ([4] and [1] respectively).
Another useful reference is [3] for a good exposition on the various problems
involved in the effective Deuring correspondence together with several algorithms
and reductions. For more on the subject of quaternion algebra and the KLPT

algorithm, we direct the reader to the notes written by Laia Amorós and David
Kohel for the 2nd week of the isogeny school. Some background and preliminary
definitions on identification and signature schemes can be found in the notes of
Ward Beullens on SIDH and CSIFiSh (first half of week 4). The rest of these notes
is structured in two parts. First, we review all the necessary technical content
and algorithms on the effective Deuring correspondence. Then, we introduce the
two constructions and study their security and efficiency.

1 The Effective Deuring Correspondence

Throughout this section, we are going to look at supersingular elliptic curves
over Fp2 . We denote E(j) the curve of j-invariant equal to j and write Bp,∞ for
the quaternion algebra ramified at p and infinity.

1.1 Endomorphism Rings and Kernel Ideals

The initial Deuring correspondence can be summarized with Theorem 1, which
was first proven by Deuring in [2].

Theorem 1. The set of maximal orders in Bp,∞ under isomorphisms is in
bijection with the set of supersingular j-invariants over Fp2 under galois conjugacy.

This bijection is explicitly obtained by sending j to the endomorphism ring
End(E(j)). In Theorem 1, we are considering j-invariants over Fp2 . The only
non-trivial element in the galois group of Fp2/Fp is the Frobenius morphism.
Thus, given a isomorphism class of maximal orders O, there is either one or
two j-invariants such that End(E(j)) ∼= O. It is unique when j ∈ Fp and the
Frobenius π : (x, y) 7→ (xp, yp) is an endomorphism of E(j). Otherwise, the two
j-invariants are equal to j and jp.

Remark 1. In these notes, we sometimes abuse notations and assimilate an
endomorphism α of a curve E with the corresponding element in Bp,∞ contained
in some maximal order O ∼= End(E). To be technically correct we should have
used an explicit bijection between O and End(E) every time.



Kernel ideals were first introduced by Waterhouse in [6]. They can be used to
extend the original result from Deuring to isogenies and integral ideals of maximal
orders. Given an isogeny ϕ : E → ?, we define the associated kernel ideal as

Iϕ = {α ∈ End(E) : α(P ) = 0 for all P ∈ ker(ϕ)}.

With this notations we can state Theorem 2.

Theorem 2. Given a supersingular curve E, a maximal order O such that
End(E) ∼= O and a separable isogeny ϕ : E → E′ of degree D, Iϕ is a left integral
O-ideal of norm D. The right order OR(Iϕ) is isomorphic to End(E′) and Iϕ is
isomorphic to Hom(E′, E) ◦ ϕ. Additionally, every integral left O-ideal arises in
this way.

Remark 2. Over Fp2 , the only inseparable isogeny is the frobenius. For supersin-
gular curves, it makes no sense to talk about kernel ideals for the frobenius as its
kernel is trivial (this is one of the equivalent ways to define a supersingular elliptic
curve). Yet, we can still formulate a result similar to Theorem 2 by looking at
the prime ideals p over p contained in maximal orders (in fact, there is exactly
one such ideal by isomorphism class of maximal orders and it corresponds to the
frobenius isogeny).

So far, we have explained how to define ideal from isogenies but, as mentioned
in Theorem 2, for every integral ideal I there is also a corresponding isogeny ϕI .
This isogeny can be defined from its kernel that we write E[I] and sometimes
call the kernel of I. It is defined as

E[I] = {P ∈ E(Fp2) : α(P ) = 0 for all α ∈ I}.

Then, we simply take ϕI : E → E�E[I]
The most important part of the Deuring Correspondence is covered with

Theorems 1 and 2. There are several smaller notions that we can interpret
through this approach. For instance, we saw in Theorem 2 that norm and degree
were associated. Similarly, we can link the dual isogeny with the conjugate ideal
and isogeny composition with ideal multiplication. Theorem 2 can also be seen
through the prism of ideal classes. Since equivalent O-ideals have isomorphic
right orders, it is easy to see that they correspond to isogenies between the same
pair of curves. Thus, we can put the set of supersingular j-invariants in bijection
with the class set Cl(O) of any maximal order O. This approach underlies the
usual formulation of the quaternion `-isogeny path problem introduced in [5]
which is different from the one we use for Problem 4. We summarize the main
properties of this correspondence in Table 1 from [1].

1.2 Problems, algorithms and reductions

The goal of this section is to look at the algorithmic problems that arises in the
context of the Deuring correspondence. There are four problems of importance.
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Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ϕ : E → E1, ψ : E → E1 Equivalent Ideals Iϕ ∼ Iψ
Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ
Table 1. The Deuring correspondence, a summary.

The first one to appear in isogeny-based cryptography was the supersingular
isogeny path problem (Problem 2) (in fact the assumed-hardness of this problem
is the main motivation behind isogeny-based cryptography). However, given
Proposition 2, the endomorphism ring problem (Problem 1) is now considered as
the fundamental hard problem of isogeny-based cryptography.

Problem 1. Given a curve E, find a compact representation of O.

Remark 3. It is not completely clear what is meant by compact representation
and there are several possible definitions. Here, we are looking for a basis of O
over the basis 1, i, j, k of Bp,∞ with coefficients of polynomial size in log(p). It
was shown in [3] that such a representation always exists.

Problem 2. Given two curves E1, E2, find an isogeny ϕ : E1 → E2 of given degree
D.

Problems 3 and 4 are simply the translation of Problems 1 and 2 through the
Deuring correspondence.

Problem 3. Given a maximal order O ⊂ Bp,∞, find a curve E with End(E) ∼= O.

Problem 4. Given two maximal orders O1,O2, find an ideal I of norm D with
OL(I) ∼= O1 and OR(I) ∼= O2.

When D = `n, Problem 4 is called the Quaternion `-isogeny path problem,
it was the focus of [5] where the KLPT algorithm was introduced to solve it
in polynomial time. More generally, it was shown in [4] that KLPT could be
adapted to find a solution of power-smooth norm. The KLPT algorithm is the most
important building block for the algorithms and reductions introduced in [3] and
for the signature constructions that interests us. The second crucial algorithm is
the one arising from Problem 5 below.

Problem 5. Given an integral left O-ideal I of norm D, a curve E such that
End(E) ∼= O and the action of End(E) on E[D], find the corresponding isogeny
ϕI : E → E/E[I].
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In Section 1.3, we are going to introduce an algorithm IdealToIsogeny

solving Problem 5. For now, let us assume that it exists and works in polynomial
time for power-smooth norm D. For Proposition 1 we also assume that there
exists one curve E0 of known endomorphism ring O0 (in practice this is always
the case, for instance when p = 3 mod 4 we can take the curve y2 = x3 + x with
End(E) ∼= 〈1, i, 1+j2 , i+k2 〉).

Proposition 1. Problem 3 can be solved in polynomial time.

Proof. (sketch) We use KLPT between O0 and O to solve Problem 4 and find an
ideal of power-smooth norm connectingO0 andO. Then, we apply IdealToIsogeny

to compute the corresponding isogeny between E0 and a curve E. The codomain
E of this isogeny is the answer.

For our next result we need to solve the inverse of Problem 5 which is Problem 6.
We will write IsogenyToIdeal for the algorithm solving this problem.

Problem 6. Given an isogeny ϕ : E → E′ of degree D, a maximal order O such
that End(E) ∼= O and the action of End(E) on E[D], find the corresponding
O-ideal Iϕ.

Proposition 2. Problem 1 and Problem 2 are equivalent.

Proof. (sketch) To find an isogeny between E and E′ it suffices to apply the
solver for Problem 1 to find the endomorphism rings O and O′ of E and E′.
Then, with KLPT, we can find an ideal of norm D connecting these two maximal
orders. The corresponding isogeny can be computed using IdealToIsogeny and
is a suitable solution to Problem 2.

Conversely, we can find the endomorphism ring of a curve E from a solution
to Problem 2 when E′ is equal to E0. Then, we can translate the dual of this
isogeny to the corresponding ideal with IsogenyToIdeal. The desired maximal
order is simply the right order of this ideal.

Remark 4. In the proof of Proposition 2, we omitted to explain how we can
compute the action of End(E) on E[D] for the first reduction. A brief discussion
on the problem of computing the action of endomorphisms on torsion subgroups
can be found in Section 1.3.

All the algorithms and reductions mentioned above were introduced in [5,4,3]
but some of the proofs are only heuristic. Very recently, Wesolowski in [7] filled
this gap by introducing a provable version of KLPT and used it to prove formally
Proposition 2.

1.3 Ideal to isogeny translation: an algorithm

In this section, we study the algorithm IdealToIsogeny that we mentioned in
Section 1.2. As formulated in Problem 5, one of the prerequisite for this algorithm
is the action of the endomorphism ring on the D-torsion. In the end of this

4



section, we try to outline how one can compute this action for any endomorphism
ring. This is also the purpose of Exercise 3.4. For now, let us just assume that it
is given.

We focus on the case of cyclic isogenies as it is the relevant one for isogeny-
based cryptography. As usual when the degree is power-smooth, we can compute
the desired isogeny from a generator of its kernel (which is equal to E[I]). If we
recall the definition of E[I], it is easy to see that a generator is simply a point
of the correct order sent to 0E by every element of I. We obtain the following
algorithm:

1. Select α ∈ I such that gcd(n(α), D2) = D.
2. Select a basis P,Q of E[D].
3. Compute α(P ), α(Q).
4. If α(P ) has order D find a such that α(Q) = [a]α(P ). If not, swap P and Q

and try again.
5. Output the isogeny of kernel generated by Q− [a]P .

The fact that α of the correct norm can be found in Step 1 is simply a consequence
of the definition of the norm of an ideal. The norm condition gcd(n(α), D2) = D
implies that either α(P ) or α(Q) has order D. Finally, since α is in I, we know
there must be a subgroup sent to 0E by α and so the DLP in Step 4 has a
solution. This proves that the above algorithm terminates.

The complexity depends mainly on the value of D. First, it it clear that we
must have a polynomial-size representation of points in the D-torsion. Then, as
we assumed that we can evaluate α on the D-torsion efficiently, the remaining
hard operations are the DLP in the subgroup of order D and the D-isogeny
computation. When D is power-smooth everything is efficient and we obtain a
polynomial-time algorithm. Overall, as soon as D is smooth and the D-torsion is
defined over an extension of polynomial degree, our algorithm is polynomial-time.

We conclude this section by talking about endomorphism ring explicit rep-
resentation and computation of the action of endomorphisms on torsion points.
More explicitly, given E and O ∼= End(E), we need a concrete basis such that
O = 〈ω1, ω2, ω3, ω4〉, where each ωi corresponds to an endomorphism ρi ∈ End(E)
that can be efficiently evaluated on any point. In full generality, we only how
to do this in special cases such as j = 1728 where there exists some endomor-
phisms with very simple expression. We now describe a way to do that for
other endomorphisms using an approach introduced in [3]. The method is based
on the existence of a special curve E0 admitting an explicit representation of
End(E0) ∼= 〈ω0

1 , ω
0
2 , ω

0
3 , ω

0
4〉 and an isogeny ϕ : E0 → E of degree Nϕ. The ideal

Iϕ is a left O0-ideal and right O-ideal with O ' End(E). Since Iϕ is integral, it
is contained in both O0 and O. From there, it is easy to see that NϕO ⊂ I ⊂ O0.
We will use that fact to represent and compute elements of O. An element α ∈ O
can be written as an element of O0

Nϕ
with α = 1

Nϕ

∑4
i=1 aiω

0
i with ai ∈ Z for

i ∈ {1, 2, 3, 4}. Using that, it is possible to evaluate an endomorphism α at a

point P of order coprime with Nϕ as α(P ) = 1
N2

ϕ

∑4
i=1[ai]ϕ ◦ ρi ◦ ϕ̂(P ). Exercise

3.4 is focused on the problem of evaluating endomorphisms on torsion points.
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2 Signatures from Endomorphism Ring Proof of
Knowledge: GPS and SQISign

The conclusion of the story that we tried to tell in Section 1.2 is that everything
becomes easy when the inputs are expressed in the world of quaternions (mainly
because we can apply KLPT and IdealToIsogeny). Thus, as endomorphism rings
(through Problem 1) are the keys to go from elliptic curves to quaternions, we
can see them as trapdoors. The quite natural question from this observation is:
can we use that principle to show that we know the endomorphism ring of a
supersingular elliptic curve ? The first attempt to achieve this idea led to the
GPS signature scheme [4]. The overall principle (which is shared by SQISign)
is to use the KLPT algorithm to show that one knows the endomorphism ring of
some public key curve.

2.1 GPS

The GPS signature is obtained by applying the fiat-shamir transform to the rep-
etition of a two-special sound interactive identification protocol that we describe
below. As we explained, this identification scheme is based on endomorphism ring
proof-of-knowledge and it follows the sigma protocol standard framework. The
public key is some supersingular curve EA and the secret key is O ∼= End(EA)
(or equivalently a secret isogeny τ from the public curve E0 to EA).

Commitment The prover generates a random isogeny walk σ0 : EA → E1 of
degree Dc, and sends E1 to the verifier.

Challenge The verifier sends a bit b ∈ {0, 1} to the prover.
Response If b = 0, the prover reveals σ0 to the verifier. Otherwise he uses the

secret key to compute another isogeny σ1 : E0 → E1 of degree D and reveal
it to the verifier.

Verification The verifier accepts if the received isogeny σb is from EA to E1

and has degree Dc when b = 0 or from E0 to E1 and has degree D when
b = 1. They reject otherwise.

E0 b ∈ {0, 1}

E1EA

τ

σ0

σ1 (KLPT)

commitment isogeny (prover)

• challenge bit (verifier)

2nd response isogeny (prover)

secret key isogeny

Fig. 1. A picture of GPS’s identification protocol

For this protocol, the technical challenge lies in the computation of σ1. After
reading Section 1.2, the method should be clear to the reader. The isogeny σ1 is
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going to be translated with IdealToIsogeny from an ideal obtained by applying
KLPT on O0

∼= End(E0) and O1
∼= End(E1). In order to apply the KLPT algorithm,

we need to compute O1, which can be done by computing Iσ1 (and its right order)
with IsogenyToIdeal. Note that if one would rather use IdealToIsogeny for
this step as well, one could go the other way around and start by generating Iσ1

before translating it into an isogeny.

In terms of security, there are two important properties: soundness and honest-
verifier zero-knowledge. Intuitively, the first one ensures that the verification
cannot be satisfied without the prover knowing the secret while the second one
ensures that the proof does not leak too much information on the secret key
to the verifier. More precisely, to prove 2-special soundness, one needs to show
that if two correct answers are revealed for the same commitment but different
challenges, then the secret can be recovered. For GPS, two correct answers for
different challenges imply that the path σ̂0 ◦ σ1 : E0 → EA is revealed. As we
explained in the sketch of proof for Proposition 2, this is enough for anyone to
compute the endomorphism ring of EA. As such, the soundness holds under the
hardness of Problem 1. For honest-verifier zero-knowledge, we need to argue that
a valid transcript can be generated by a simulator with the sole knowledge of the
public key. When b = 0, it is clear that generating a random σ1 can be done by
anyone knowing EA. When b = 1, the proof is a bit more tricky. It uses the fact
that the ideal obtained from KLPT only depends on the class of equivalence of
the ideal given in input (and not the actual representative of this class). As such,
a simulator can simply generate an ideal belonging to a random class and then
apply KLPT on it.

In terms of efficiency, the GPS signature scheme suffers from one major flaw
which is that the underlying identification scheme has only a challenge space of
size 2. Intuitively, it means that anyone has 1/2 chance of successfully cheating
(by guessing the correct challenge). This means that to obtain λ bits of security,
we need to repeat λ times this protocol. Furthermore, this repetition also implies
that the signature will not be compact (in the end, the size is going to be
quadratic in λ). Additionally, at the time of GPS, it was not clear how to
efficiently instantiate this protocol (and the IdealToIsogeny part in particular).
Indeed, the problem is that the degree D of solutions obtained with KLPT are
roughly equal to p3. This is too big to ensure that D can have a very small
smoothness bound while having the D-torsion defined on a small fields extension
which are the two conditions for IdealToIsogeny too be efficient. As a result,
there hadn’t been any implementation of GPS.

2.2 SQISign

SQISign is built on a principle similar to GPS but improves drastically the
efficiency by addressing the issues we outlined in the previous section. The only
real downside compared to GPS is security (honest-verifier zero-knowledge in
particular) which is based upon a new ad hoc assumption.
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Before introducing the underlying identification scheme, we try to explain and
motivate the main difference between SQISign and GPS which is the soundness of
the underlying identification scheme. More specifically, for GPS the low soundness
is due to the fact that the challenge space has only size two. To improve the
soundness, we need to have a challenge space that can be arbitrarily big. Before
explaining how to do that, let us go back a little bit and try to analyze why GPS
was designed in that way. In fact, it stems from a limitation of the KLPT algorithm
from [5]. The main contribution of [5] is an algorithm that solves Problem 4
when one of the orders is a special order (that we denoted O0 throughout these
notes). From there, one can solve the generic quaternion path problem between
O1 and O2 by applying the special case algorithm twice on O0,O1 and O0,O2

before combining the solutions together. While this idea is sufficient to solve
Problem 4, it is not generic enough for our application. Explaining why this
method is problematic is the purpose of Exercise 3.3. As a consequence, we are
stuck to use the special case KLPT algorithm which does not seem to allow us to
devise a much better protocol than GPS. To go beyond that, we are in need of a
new way to solve Problem 4 in the generic case. In reality, the reasoning that
we just unfolded is exactly what lead to SQISign: use a new generalized KLPT

algorithm in order to do the more efficient protocol presented below. This new
algorithm is beyond the scope of these short notes, the full details can be found
in [1].

Commitment The prover generates a random (secret) isogeny walk ψ : E0 →
E1, and sends E1 to the verifier.

Challenge The verifier sends the description of a cyclic isogeny ϕ : E1 → E2 of
degree Dc to the prover.

Response From the isogeny ϕ ◦ ψ ◦ τ̂ : EA → E2, the prover constructs a new
isogeny σ : EA → E2 of degree D such that ϕ̂ ◦ σ is cyclic, and sends σ to
the verifier.

Verification The verifier accepts if σ is an isogeny of degree D from EA to E2

and ϕ̂ ◦ σ is cyclic. They reject otherwise.

E0 E1

E2EA

τ

ψ

ϕ

σ

commitment isogeny (prover)

challenge isogeny (verifier)

response isogeny (prover)

secret key isogeny

Fig. 2. A picture of SQISign’s identification protocol

Similarly to GPS, the difficult operation in the above scheme is the compu-
tation of the answer isogeny σ. It can be done in the following way: the prover
computes the ideals corresponding to ψ and ϕ with IsogenyToIdeal, and use
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them to compute the maximal order O2 isomorphic to End(E2). Then, the prover
applies the new generalized KLPT on O2 and the endomorphism ring of EA to
obtain an ideal connecting them. The answer σ is the isogeny corresponding to
this ideal and is obtained by applying IdealToIsogeny.

For security, we look again at soundness and honest-verifier zero-knowledge. For
the former, we study answers to different challenges under the same commitment.
From the diagram in Fig. 2, we see that this yields two distinct isogenies from E1

to EA. By combining these paths, we obtain a non-trivial endomorphism of EA.
Thus, soundness holds under the hardness of the endomorphism computation
problem which is heuristically assumed to be as hard as the full endomorphism
ring computation problem (see [3] for more details). Since the challenge space is
now the set of isogenies of degree Dc, it can be expanded arbitrarily by increasing
the size of Dc. Thus, we can obtain λ bits of soundness with just one iteration
of the protocol. Unfortunately, zero-knowledge is harder to obtain in the case
of SQISign as we need to argue that a simulator can produce from the public
key a valid transcript that is indistinguishable from a real one. Without the
knowledge of End(EA), there is little more a simulator can do than generating a
random isogeny of the desired degree. Unfortunately, the isogenies σ obtained
from the generic KLPT are far from being random ones. Thus, zero-knowledge
of SQISign’s identification scheme is basically based on the assumption that
an isogeny obtained by applying IdealToIsogeny to the output of the generic
KLPT is indistinguishable from random. In fact, the authors obtain a slightly
more generic assumption by showing that σ is in fact distributed as a random
isogeny among a set of isogenies of degree D (which highly depends on the new
generalized KLPT algorithm). Yet, in the end, the assumption remains very ad
hoc and highly non-standard. For now, there are no known ways to reduce this
problem to one of the classical isogeny-based assumptions.

Efficiency improvement was one of the main motivation behind SQISign. The
high-soundness of the new identification protocol is already a huge leap forward
as the identification scheme only needs to be executed once. The size of σ is only
slightly bigger than the one of σ1 for GPS (15/4 log(p) against 3 log(p)) so one
iteration of the SQISign identification scheme is only marginally slower than one
iteration of the GPS identification scheme. In both cases, the major bottleneck
is the execution of IdealToIsogeny and so the second important contribution
of the SQISign paper [1] is a new algorithm to perform that step efficiently when
the degree D is smooth but the D-torsion is not necessarily defined over a small
extension. The trick is to factorize D as D1D2 . . . Dn where each of the Di is such
that we can apply the algorithm introduced in Section 1.3. This principle bring
some complications as we need to compute the action of several endomorphism
rings on the Di torsion (and the Di are not necessarily pairwise coprime) but it
can be done quite efficiently in the end using (once again) the KLPT algorithm
(all the details can be found in [1]). The solution of Exercise 3.4 is a first step
toward the final method introduced in [1].
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A concrete instantiation of SQISign was also part of [1]. To obtain fast verification,
the authors choose to take the degree D of σ to be a power of two (heuristically it
was estimated in [1] that taking D = 21000 should be enough). Then, to apply the
new efficient IsogenyToIdeal, the most important requirement is to use a special
prime p such that p2 − 1 = 2fTn where T ∼ p3/2 is an odd smooth number (this
requirement stems from the IdealToIsogeny improvement mentioned above)
and f is as big as possible (that factorization of p2 − 1 implies that the 2fT
torsion is defined over Fp2). To reach NIST-1 level of security, it is argued in [1]
that a p of 256 bits should be enough. With that size, SQISign is by far the most
compact post-quantum signature scheme targetting NIST-1 level of security. The
key sizes can be found in Table 2. The SQISign paper exhibits an example of
such a prime where f = 33, log T = 395 and T is 213-smooth. This prime was
used in a C implementation whose performances are reported in Table 3. The
code is available at https://github.com/SQISign/sqisign.

Secret Key (bytes) Public Key (bytes) Signature (bytes)

16 64 204
Table 2. Size of SQISign keys and signature for the NIST-1 level of security.

Keygen Sign Verify

1st quartile 564 2,256 41
ms median 575 2,279 42

3rd quartile 587 2,321 43
Table 3. Performance of SQISign in millions of cycles and in milliseconds. Statistics
over 100 runs for key generation and signature, and over 250 runs for verification.

3 Exercices

3.1 An example of ideal to isogeny translation.

Take p = 163, and let E0 be the supersingular curve y2 = x3 + x over Fp2 .
Then, we known that Bp,∞ = Q〈1, i, j, k〉 with i2 = −1, j2 = −163 and k =
ij. The endomorphism ring of E0 is isomorphic to 〈1, i, 1+j2 , i+k2 〉 through two

endomorphisms ι : (x, y) 7→ (−x,
√
−1y) and π : (x, y) 7→ (xp, yp) (respectively

corresponding to i and j). Find a generator of the kernel of I = 〈2, 1 + i, i +
k, 3+i+j+k2 〉 and compute the codomain of the corresponding isogeny.
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3.2 Isogeny to ideal translation

Using the IdealToIsogeny algorithm described in Section 1.3 as inspiration,
propose an algorithm IsogenyToIdeal to solve Problem 6 when the degree D is
power-smooth.

3.3 Attack on a broken version of SQISign

This exercise uses some of the notations given in the beginning of Section 2.2.
Assume that there exists a KLPTSpecial algorithm to solve Problem 4 in the
special case where one of the orders is a special order O0, derive (and present
it step by step) a simple algorithm KLPTGeneric to solve Problem 4 for any
maximal orders. We want ideals of norm a power of ` for some small prime `
and no additional constraint. Describe an attack to recover the endomorphism
ring of the public key EA when SQISign is instantiated with this algorithm
KLPTGeneric.

3.4 Endomorphism ring action on torsion points

Given ϕ : E0 → E an isogeny of degree D (the D-torsion is assumed to be
defined over Fp2) where E0 is a special curve of known endomorphism, imagine a
polynomial-time algorithm (using KLPT, IsogenyToIdeal and IdealToIsogeny)
to compute the action of End(E) on E[D].
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A Corrections

Correction of Exercise 3.1 We apply the algorithm outlined in Section 1.3
on α = 1 + i. With n(α) = 2, we have a suitable candidate and it suffices to
find the point of two torsion P sent to 0 by α. This point is such that P = ι(P )
with ι : (x, y) 7→ (

√
−1x,−y). It is easy to see that P = (0, 0) is the point we

are looking for. Then, the codomain of the isogeny can be computed using the
usual Vélu formula. In fact, this curve is isomorphic to E0 as can be verified by
computing its j-invariant. This last fact, could have been proven without any
isogeny computation just by realizing that since n(α) = 2 = n(I) we must have
I = O0α, a principal ideal that corresponds to an endomorphism through the
Deuring Correspondence (see Table 1).

Correction of Exercise 3.2 Since the degree D is powersmooth, the D torsion
is going to be defined over a small Fp-extension and operations such as D-isogeny
computations and DLP over the D-torsion are efficient. As for Section 1.3, we
assume that we have the ability to evaluate efficiently D-torsion points through
any endomorphism of the base curve E. We write O = 〈α1, α2, α3, α4〉 ∼= End(E)
and ϕ : E → E′ is the isogeny given in input. We also assume that a generator
P of kerϕ is given (if not, it could have easily been computed by solving a few
DLP).

1. Compute α1(P ), α2(P ), α3(P ), α4(P )

2. Find x1, x2, x3, x4 such that
∑4
i=1[xi]αi(P ) = 0 and gcd(n(

∑4
i=1 xiαi), D

2) =
D.

3. Output I = OD +O
∑4
i=1 xiαi.

There are several ways of finding a suitable linear combination. A possibility
is to select αi, αj such that αi(P ), αj(P ) is a basis of E[D] and then express
αk(P ) (with k 6= i, k 6= j) in this basis by solving a bi-dimensional DLP. Since
α1, α2, α3, α4 is a basis of End(E), it is easy to see that there always exists such
indices i, j. The gcd condition should be satisfied with good probability.

Correction of Exercise 3.3 First, we describe the KLPTGeneric algorithm.
The special maximal order O0 is such that we can apply KLPTSpecial. The two
maximal orders in input are O1,O2.

1. Compute I1 = KLPTSpecial(O0,O1) and I2 = KLPTSpecial(O0,O2).

2. Output J = I1 · I2.

The attack on SQISign works in the following way: given σ : EA → E2

an isogeny computed from an ideal J obtained as the output of KLPTGeneric,
decompose it as ϕ1 ◦ ϕ2 where ϕ1 : EA → E0 and ϕ2 : E0 → E2. Use the dual of
ϕ1 to compute End(EA) as described in the proof of Proposition 2.
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Correction of Exercise 3.4 The idea is to use the effective representation for
End(E) described in Section 1.3. The main obstacle is that this representation
requires scalar division which is not well-defined in general. In fact, it only make
sense to divide a point P by a scalar n when the order of P and n are coprime.
Thus, if we want to apply the formula on D-torsion point we need another isogeny
ψ : E0 → E of degree coprime with D. To do that we proceed in the following
way: convert ϕ into the corresponding ideal Iϕ with IsogenyToIdeal and use
Iϕ to apply KLPT in order to obtain J ∼ Iϕ of coprime power-smooth degree
D′0. Then, execute IdealToIsogeny on J to obtain ψ : E0 → E′ of degree D′.
Compute the inverse λ of D′ mod D. Then, use the formula to compute given
in Section 1.3 to evaluate any endomorphism of End(E) on the D-torsion.
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