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1. Optional further reading (surveys): von zur Gathen and Gerhard, Modern computer al-
gebra; Brent and Zimmermann, Modern computer arithmetic; Bürgisser, Clausen, and
Shokrollahi, Algebraic complexity theory ; Bernstein, Fast multiplication and its applica-
tions; Bernstein and Lange, Montgomery curves and the Montgomery ladder.

2. In the following exercises, R is a commutative ring; each fi is in R; each gi is in R; each hi
is in R; R[z] is the univariate polynomial ring over R; and R[[z]] is the univariate power-
series ring over R. Optional: Show that a set with elements 0, 1, a unary operation −,
and binary operations +, · is a commutative ring if and only if it satisfies every identity
satisfied by Z.

3. [Schoolbook polynomial multiplication over R.] Let n be a positive integer. Define
f = f0 + f1z + · · · + fn−1z

n−1 ∈ R[z] and g = g0 + g1z + · · · + gn−1z
n−1 ∈ R[z]. Define

h = fg, and write h as h0 + h1z + · · ·+ h2n−2z
2n−2. Given f0, . . . , fn−1 and g0, . . . , gn−1,

“schoolbook multiplication” computes each hi in the most obvious way: it computes
h0 = f0g0 with 1 multiplication in R; it computes h1 = f0g1 + f1g0 (assuming n ≥ 2)
with 2 multiplications in R and 1 addition in R; etc. How many multiplications in R
does schoolbook multiplication take in total to obtain all of h0, . . . , h2n−2? How many
additions in R? Express your answers as polynomials in n, and check that these answers
match 4 multiplications and 1 addition for n = 2. Do these multiplication and addition
counts also hold for n = 0?

4. [Schoolbook multiplication, recursive view.] For each positive integer n, write MR(n) for
the minimum length of a chain of multiplications, additions, and subtractions that, given
any f0, f1, . . . , fn−1, g0, g1, . . . , gn−1 as input, produces h0, h1, . . . , h2n−2 as output, where

h0 + · · ·+ h2n−2z
2n−2 = (f0 + · · ·+ fn−1z

n−1)(g0 + · · ·+ gn−1z
n−1)

in R[z]. Show that MR(1) = 1, and that MR(n+ 1) ≤MR(n) + 4n.

5. [Karatsuba multiplication over R, simplest case.] Say h = h0+h1z+h2z
2 is the product of

f = f0+f1z and g = g0+g1z. Explain how to compute h0, h1, h2, given f0, f1, g0, g1, using
3 multiplications rather than 4 multiplications. How many additions are there, counting
subtractions as additions? How slow do multiplications in R need to be compared to
additions for this to be a good tradeoff?

6. [Clumping.] The polynomial f = f0 +f1z+ · · ·+f2n−1z
2n−1, where n is a positive integer,

can be viewed as the image of the polynomial F0 + F1y ∈ R[z][y] under the R[z]-algebra
morphism R[z][y] → R[z] that takes y to zn, where F0 = f0 + f1z + · · · + fn−1z

n−1

and F1 = fn + fn+1z + · · · + f2n−1z
n−1. If g = g0 + g1z + · · · + g2n−1z

2n−1 is similarly
viewed as the image of G0 +G1y for suitable G0, G1, then the product fg is the image of
(F0 +F1y)(G0 +G1y). If (F0 +F1y)(G0 +G1y) is computed by Karatsuba multiplication
over R[z], and if each product in R[z] is computed by schoolbook multiplication over R,
then how many multiplications in R are used in total to obtain fg? How many additions?
Did you include the cost of applying the morphism?

7. [Striding.] The polynomial f = f0 + f1z + · · ·+ f2n−1z
2n−1, where n is a positive integer,

can alternatively be viewed as the image of the polynomial (f0 + f1z) + (f2 + f3z)y +
(f4 + f5z)y2 + · · · ∈ R[z][y] under the R[z]-algebra morphism R[z][y] → R[z] that takes
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y to z2. If a product in R[z][y] is computed by schoolbook multiplication over R[z], and
if each product in R[z] is computed by Karatsuba multiplication over R, then how many
multiplications in R are used in total to obtain fg? How many additions? Is this faster
or slower than Exercise 6?

8. [Karatsuba multiplication, general case.] Show that MR(2n) ≤ 3MR(n) + 8n − 4. Show
that MR(n) ∈ O(nlog2 3). What is the smallest value of n for which this exercise produces
smaller upper bounds on MR(n) than schoolbook multiplication?

9. What’s the chance that we’ve carried out all of the above analyses correctly? How can
we increase this chance? Would this increase the time taken for the analyses?

10. Literature-search exercise: Why do hundreds of papers refer to Karatsuba multiplication
as “Karatsuba–Ofman” multiplication? Why are they wrong? What does this tell you
about the scientific process?

11. [Refined Karatsuba multiplication.] A 1976 paper “Practical fast polynomial multiplica-
tion” by Moenck includes a claim that “with care” one can obtain MR(2n) ≤ 3MR(n)+7n
from Karatsuba’s method. This is, for almost all n, better than the bound MR(2n) ≤
3MR(n) + 8n− 4 from Exercise 8. No details were provided in the 1976 paper; Moenck’s
OS-360 card decks were discarded long ago; and a random sample of several subsequent
papers on the topic consistently says 8, not 7. Does the 7 sound plausible? Show that
the claim is correct: even better, MR(2n) ≤ 3MR(n) + 7n− 3.

12. [Toom multiplication, simplest case beyond Karatsuba.] The product h = h0 + h1z +
h2z

2 +h3z
3 +h4z

4 of f = f0 +f1z+f2z
2 and g = g0 +g1z+g2z

2 satisfies h(1) = f(1)g(1),
h(2) = f(2)g(2), and h(3) = f(3)g(3). Explain how to compute 6h0, 6h1, 6h2, 6h3, 6h4
from f0, f1, f2, g0, g1, g2 using 5 multiplications. Optional: How many additions did you
use?

13. Assume that 6 is invertible in R. Define M ′
R(n) the same way as MR(n), except for also

allowing constants (elements of R) as extra inputs: e.g., computing f0g0/2 takes two
multiplications given f0, g0, 1/2. Show that M ′

R(n) ∈ O(nlog3 5).

14. Optional: An addition chain is typically defined as a finite sequence c0, . . . , c` such that
c0 = 1 and such that, for each i ∈ {1, . . . , `}, there exist j, k ∈ {0, . . . , i− 1} with
ci = cj+ck. This is supposed to be a model of an exponentiation algorithm that computes,
for each i in turn, the cith power of its input. How many doublings are in the addition
chain 1, 2, 3, 4, 7? How would you modify the definition so that this question has a clear
answer? How would you formalize the definitions of MR(n) and M ′

R(n)?

15. [Toom multiplication, general case.] Let ε be a positive real number. Show that there is
a positive integer i such that if 1, 2, . . . , i are invertible in R then M ′

R(n) ∈ O(n1+ε). How
does i relate to ε?

16. Show that M ′
R(n) is bounded above by n1+o(1) if all positive integers are invertible in R.

17. Toom (1963) actually stated a multiplication algorithm for n-bit integers rather than n-
coefficient polynomials. Cook (1966) wrote that “it turns out that the same method works
for multiplying polynomials” over “any finite field”. Should this be called “Toom–Cook
multiplication” rather than “Toom multiplication”?

18. Exhibit a choice of R for which MR(n) is sublinear in n.

19. For the remaining exercises, assume that multiplying two n-coefficient polynomials uses
O(n log n) operations. Optional literature-search exercises: Who should be credited for
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showing that M ′
R(n) ∈ O(n log n log log n)? Who should be credited for showing that

MR(n) ∈ O(n log n log log n)? How close are we to knowing that MR(n) ∈ O(n log n)?
Who should be credited for the joke that the sound of an analytic number theorist
drowning is “log log log log log”?

20. [Power-series multiplication.] Let f = f0 + f1z+ f2z
2 + · · · and g = g0 + g1z+ g2z

2 + · · ·
be two elements of the power-series ring R[[z]]. Write the product h = fg as h0 + h1z +
h2z

2 + · · · . Explain how to compute h0, . . . , hn−1, given f0, . . . , fn−1 and g0, . . . , gn−1, in
O(n log n) operations.

21. [An iteration for power-series reciprocal.] Let f, g be two elements of the power-series
ring R[[z]]. Assume that fg ∈ 1 +O(zn) where n is a positive integer; here O(zn) means
the set of power series of the form hnz

n + hn+1z
n+1 + · · · . Show that fG ∈ 1 + O(z2n)

where G = 2g − fg2.

22. [Simpson’s method, usually miscredited to Newton.] Simpson (1740) introduced the
following iteration for finding roots of a function ϕ, unifying and generalizing previous
iterations for polynomials ϕ: if x is close to a root then, under reasonable assumptions,
x− ϕ(x)/ϕ′(x) is closer, where ϕ′ is the derivative of ϕ. Show that the iteration g 7→ G
in Exercise 21 is a special case of Simpson’s iteration.

23. [Power-series reciprocal, continued.] Define f = f0 +f1z+f2z
2 + · · · ∈ R[[z]], and assume

that f0 is invertible in R. Explain how to compute the coefficients of 1, z, . . . , zn−1 in
1/f , given 1/f0, f0, f1, . . . , fn−1, in O(n log n) operations.

24. [Polynomial division.] Define f = f0+f1z+ · · ·+fnz
n and g = g0+g1z+ · · ·+g2n−1z

2n−1.
Assume that fn is invertible in R. Explain how to compute the coefficients of bg/fc and
g mod f , given 1/fn, f0, f1, . . . , fn, g0, g1, . . . , g2n−1, in O(n log n) operations.

25. If someone gives you a machine that quickly divides a 2n-coefficient polynomial by a
degree-n polynomial, but you actually want to quickly divide a 3n-coefficient polynomial
by a degree-n polynomial, what do you do?

26. [Product trees.] Explain how to compute the coefficients of (f0 + g0z) · · · (fn−1 + gn−1z),
given f0, g0, . . . , fn−1, gn−1, in O(n(log n)2) operations.

27. [Remainder trees.] Define f = f0+f1z+· · ·+fn−1zn−1. Explain how to compute the values
f(g0), f(g1), . . . , f(gn−1), given f0, . . . , fn−1, g0, . . . , gn−1, in O(n(log n)2) operations.

28. [Modular factorials.] If f = (z + 1)(z + 2) · · · (z + n) then f(0)f(n) · · · f(n2 − n) = (n2)!.
Explain how to compute a! in Z/m, given positive integers a,m, using O(a1/2(log a)2)
operations in Z/m. Optional: Explain how to use binary search on a to find a prime
factor of m using m1/4+o(1) operations, assuming m > 1.

29. [Modular q-factorials.] Explain how to compute, given positive integers q, a,m, the prod-
uct (1 − q)(1 − q2)(1 − q3) · · · (1 − qa) in Z/m using O(a1/2(log a)2) operations in Z/m.
Explain how to compute the product of 1 + q + · · · + qi−1 for i ∈ {1, 2, . . . , a} at this
speed given also an inverse of 1 − q in Z/m. Optional: Can you drop the invertibility
assumption?

30. [Addition on Montgomery curves.] Assume that R is a field, that 2 is invertible in R, and
that A,B are elements of R with B(A2 − 4) 6= 0. Assume that P,Q, P + Q,P − Q are
nonzero points on the elliptic curve By2 = x3+Ax2+x. Write x1 = x(P ) and x2 = x(Q).
Solve the exercise from Joost Renes saying that x(P+Q)x(P−Q) = (x1x2−1)2/(x1−x2)2,
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and show that

(z − x(P +Q))(z − x(P −Q)) = z2 +
F1(x1, x2)

F0(x1, x2)
z +

F2(x1, x2)

F0(x1, x2)

for biquadratic polynomials F0, F1, F2 satisfying x20F0(x1, x2)+x0F1(x1, x2)+F2(x1, x2) =
(x0x1 − 1)2 + (x0x2 − 1)2 + (x1x2 − 1)2 − 2x0x1x2(x0 + x1 + x2 + 2A)− 2.

31. [Fast resultants, step 1.] Define F0 as in Exercise 30. Define

∆ = F0(g0, z)F0(g1, z) · · ·F0(gn−1, z) ∈ R[z].

Explain how to compute the coefficients of ∆, given A, g0, . . . , gn−1, using O(n(log n)2)
operations.

32. [Fast resultants, step 2.] In Exercise 30, assume that P1, P2, . . . , Pn and Q1, Q2, . . . , Qn

are nonzero curve points. Explain how to compute the product
∏

i,j F0(x(Pi), x(Qj))

using O(n(log n)2) operations, given A, x(P1), . . . , x(Pn), x(Q1), . . . , x(Qn).

33. [Elliptic resultants, step 1.] In Exercise 30, assume that P1, P2, . . . , Pn and Q1, Q2, . . . , Qn

are nonzero curve points, and let α be an element of R. Explain how to compute∏
i,j

(α2F0(x(Pi), x(Qj)) + αF1(x(Pi), x(Qj)) + F2(x(Pi), x(Qj)))

using O(n(log n)2) operations, given α,A, x(P1), . . . , x(Pn), x(Q1), . . . , x(Qn).

34. [Elliptic resultants, step 2.] In Exercise 30, assume that P1, P2, . . . , Pn and Q1, Q2, . . . , Qn

are nonzero curve points, and assume for each i, j that Pi +Qj 6= 0 and Pi−Qj 6= 0. Let
α be an element of R. Include division in R as one of the allowed operations. Explain
how to compute

∏
i,j(α−x(Pi+Qj))(α−x(Pi−Qj)) using O(n(log n)2) operations, given

α,A, x(P1), . . . , x(Pn), x(Q1), . . . , x(Qn).

35. [Covering kernels efficiently.] In Exercise 30, assume that P has order at least 64. Find
integers p1, p2, p3, p4, q1, q2, q3, q4 such that each Pi = piP is nonzero; each Qi = qiP is
nonzero; and the 32 points Pi +Qj and Pi −Qj are the 32 points P, 3P, 5P, 7P, . . . , 63P
in some order.

36. [Kernel polynomials.] In Exercise 30, assume that P has odd order `. Define Ψ ∈ R[z] as
the polynomial

∏
1≤i≤(`−1)/2(z − x(iP )). Explain how to rewrite Ψ(α) for ` = 67 in the

form (α−x(2P ))
∏

i,j(α−x(Pi+Qj))(α−x(Pi−Qj)), and how to rewrite Ψ(α) for ` = 71
in the form (α − x(2P ))(α − x(4P ))(α − x(6P ))

∏
i,j(α − x(Pi + Qj))(α − x(Pi − Qj)),

where i, j each range through {1, 2, 3, 4}.

4


