Hyperelliptic Curves and their Jacobians

Benjamin Smith
Isogeny school, online, 2021
Inria + École polytechnique, France

Outline

Today / Class 1:

The basic geometry and arithmetic of hyperelliptic curves and their Jacobians.
Genus 2 is an important special case, but it helps to see the broader context.

Tomorrow / Class 2:

- Cryptographic aspects
- First steps in genus-2 isogeny-based cryptography

Recall...

Perfect ground fields

We work over a perfect field \mathbb{k}. This means

- Every irreducible polynomial over \mathbb{k} has distinct roots in $\overline{\mathbb{k}}$
- Equivalently: Either $\operatorname{char}(\mathbb{k})=0$, or $\operatorname{char}(\mathbb{k})=p$ and the Frobenius $\alpha \mapsto \alpha^{p}$ is an automorphism.

Examples:

1. Finite fields: $\mathbb{k}=\mathbb{F}_{q}$ (what we're really interested in)
2. Characteristic $0: \mathbb{k}=\mathbb{Q}, \mathbb{Q}(\sqrt{13}), \mathbb{Q}(t), \mathbb{Q} p, \mathbb{R}, \mathbb{C}, \ldots$
3. ...But not (e.g.) $\mathbb{k}=\mathbb{F}_{q}(t)$
(Because $x^{p}-t$ is irreducible, but has one multiplicity-p root $t^{1 / p}$ over $\overline{\mathbb{F}_{q}(t)}$). Also, $\alpha \mapsto \alpha^{p}$ is not an automorphism of $\mathbb{F}_{q}(t)$: there is no preimage of t.)

Fields of definition

A thing (a point, a set, a curve, a function) is defined over \mathbb{k} if it is fixed by $\operatorname{Gal}(\overline{\mathbb{k}} / \mathbb{k})$.
Example: the set $\{1+\sqrt{-1}, 1-\sqrt{-1}\} \subset \mathbb{Q}(\sqrt{-1})$ is defined over \mathbb{Q}.
If $\mathbb{k}=\mathbb{F}_{q}$, then $\mathrm{Gal}(\overline{\mathbb{k}} / \mathbb{k})$ is (topologically) generated by the q-power Frobenius, so the objects defined over \mathbb{F}_{q} are those fixed by/commuting with Frobenius. If X is a thing, then $X(\mathbb{k})$ denotes its elements/points defined over \mathbb{k}.

Hyperelliptic Curves

From elliptic to hyperelliptic curves

So far, we've considered cryptosystems built from elliptic curves and their isogenies.

But what's so special about elliptic curves?
More generally: we could try working with any algebraic curve \mathcal{X} over \mathbb{k}.

- $\mathcal{X}=\mathbb{P}^{1}=$ a line
- $\mathcal{X}=$ an elliptic curve $\mathcal{E}: y^{2}=x^{3}+A x+B$
- $\mathcal{X}: y^{2}=f(x)$ with $\operatorname{deg} f>4$ (hyperelliptic curves)
- ...More generally, a plane curve $\mathcal{X}: F(x, y)=0$ in \mathbb{A}^{2}

Questions: What kinds of groups do you get? What are the analogues of isogenies?

Hyperelliptic Curves

Hyperelliptic curves:

$$
\mathcal{X}: y^{2}=f(x)=x^{d}+\cdots
$$

with f squarefree, of degree $d>4$.
(NB: $d=1,2 \Longrightarrow$ conics; $d=3,4 \Longrightarrow$ elliptic curves.)
Hyperelliptic involution:

$$
\iota:(x, y) \longmapsto(x,-y) .
$$

Key fact: $P \mapsto x(P)$ defines a double cover $\mathcal{X} \rightarrow \mathcal{X} /\langle\iota\rangle \cong \mathbb{P}^{1}$.
Point(s) at infinity:
odd $d \Longrightarrow$ one point ∞ at infinity.
even $d \Longrightarrow$ two points ∞_{+}, ∞_{-}at infinity.

The function field

If $\mathcal{X}: F(x, y)=0$ is a plane curve over \mathbb{k}, then its function field is

$$
\mathbb{k}(\mathcal{X})=\mathbb{k}(x)[y] /(F(x, y)) .
$$

Elements: rational fractions in x and y, modulo the curve equation $F(x, y)=0$.
For more general, non-plane curves, $\mathbb{k}(\mathcal{X}):=$ fraction field of the coordinate ring.

Divisors

Zeroes and Poles

Rational functions on \mathcal{X} have poles and zeroes:
zeroes of f are the points P on \mathcal{X} where $f(P)=0$. poles of f are the points P on \mathcal{X} where $f(P)=\infty$.

Note: (zeroes and poles can occur with multiplicity >1.)
Theorem: If f is a nonzero function in $\overline{\mathbb{k}}(\mathcal{X})$, then

1. f has only finitely many zeroes and poles, and
2. counted with multiplicity, \# zeroes $(f)=\# \operatorname{poles}(f)$.

Orders of vanishing

The order of vanishing of a nonzero function f at a point P of \mathcal{X} is

$$
\operatorname{ord}_{P}(f):= \begin{cases}n & \text { if } f \text { has a zero of multiplicity } n \text { at } P \\ -n & \text { if } f \text { has a pole of multiplicity } n \text { at } P \\ 0 & \text { otherwise }\end{cases}
$$

Useful rules:

- $\operatorname{ord}_{p}(f g)=\operatorname{ord}_{p}(f)+\operatorname{ord}_{p}(g)$ for all f, g, P
- $\operatorname{ord}_{p}(f / g)=\operatorname{ord}_{p}(f)-\operatorname{ord}_{p}(g)$ for all f, g, P
- $\operatorname{ord}_{P}(\alpha)=0$ for all constants $\alpha \neq 0$ in $\overline{\mathbb{k}}$
$\cdot \operatorname{ord}_{p}\left(\sum_{i} \alpha_{i} x^{a_{i}} y^{b_{i}}\right)=n$ if the plane curve $\sum_{i} \alpha_{i} x^{a_{i}} y^{b_{i}}=0$ intersects \mathcal{X} with multiplicity n at P

Principal divisors

Each function $f \neq 0$ on \mathcal{X} has an associated principal divisor

$$
\operatorname{div}(f)=\sum_{P \in \mathcal{X}\left(\overline{\mathbb{F}}_{q}\right)} \operatorname{ord}_{p}(f)(P)
$$

The sum is formal: there is no addition law on the points.

1. $\operatorname{div}(f)=0$ if and only if f is constant (in $\overline{\mathbb{k}}_{q} \backslash\{0\}$);
2. $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g)$ and $\operatorname{div}(f / g)=\operatorname{div}(f)-\operatorname{div}(g)$;
3. $\operatorname{div}(f)=\operatorname{div}(g) \Longleftrightarrow f=\alpha g$ for some $\alpha \neq 0$ in $\overline{\mathbb{F}}_{q}$.

The principal divisors form a group

Since $\operatorname{div}(f g)=\operatorname{div}(f)+\operatorname{div}(g)$, the set of principal divisors forms a group

$$
\operatorname{Prin}(\mathcal{X}):=\{\operatorname{div}(f): f \in \overline{\mathbb{k}}(\mathcal{X})\}
$$

Functions are determined by their principal divisors, up to constant factors. Or, if you like exact sequences:

$$
1 \longrightarrow \overline{\mathbb{k}}^{\times} \longrightarrow \overline{\mathbb{k}}(\mathcal{X})^{\times} \longrightarrow \operatorname{Prin}(\mathcal{X}) \longrightarrow 0
$$

Examples

Consider the elliptic curve $\mathcal{E}: y^{2}=x^{3}+1$ over \mathbb{F}_{13}.

- $\operatorname{div}(x)=(0,1)+(0,-1)-2 \infty ;$
- $\operatorname{div}(y)=(-1,0)+(4,0)+(-3,0)-3 \infty$;
- $\operatorname{div}\left(x^{2} / y\right)=2(0,-1)+2(0,1)-(-1,0)-(4,0)-(-3,0)-\infty ;$
$\cdot \operatorname{div}\left(\frac{x^{2}-y-1}{x y}\right)=(0,-1)+(2,3)+\infty-(0,1)-(-3,0)-(4,0)$.
More generally:
If $f(x, y)=0$ is the line through P and Q, then $\operatorname{div}(f)=P+Q+(\ominus(P \oplus Q))-3 \infty$. (Here, \oplus means the group law on \mathcal{E}, and \ominus is negation.)

General divisors

Divisors on \mathcal{X} are formal sums of points in $\mathcal{X}(\overline{\mathbb{k}})$ with arbitrary coefficients in \mathbb{Z}. We define a (free abelian, infinitely generated) group

$$
\operatorname{Div}(\mathcal{X}):=\left\{\sum_{P \in \mathcal{X}\left(\mathbb{F}_{q}\right)} n_{P}(P)\right\},
$$

with the n_{p} in \mathbb{Z}, and only finitely many $n_{p} \neq 0$.
Of course, $\operatorname{Prin}(\mathcal{X})$ is a subgroup of $\operatorname{Div}(\mathcal{X})$.

The Picard group

The group $\operatorname{Div}(\mathcal{X})$ is way too big, and tells us nothing about the geometry of \mathcal{X}. We work with the Picard group: the quotient

$$
\operatorname{Pic}(\mathcal{X}):=\operatorname{Div}(\mathcal{X}) / \operatorname{Prin}(\mathcal{X})
$$

Elements are divisor classes:

$$
[D]=\{D+\operatorname{div}(f): f \in \overline{\mathbb{k}}\} .
$$

If D_{1} and D_{2} are in the same class, then we say they are linearly equivalent:

$$
D_{1} \sim D_{2} \Longleftrightarrow D_{1}=D_{2}+\operatorname{div}(f) \text { for some } f \in \overline{\mathbb{k}}(\mathcal{X})
$$

Degree

We have a degree homomorphism deg : $\operatorname{Div}(\mathcal{X}) \rightarrow \mathbb{Z}$,

$$
\operatorname{deg}\left(\sum_{P} n_{P}(P)\right)=\sum_{P} n_{P} .
$$

Its kernel is a subgroup of $\operatorname{Div}(\mathcal{X})$, denoted $\operatorname{Div}^{0}(\mathcal{X})$:

$$
\operatorname{Div}^{0}(\mathcal{X}):=\operatorname{ker} \operatorname{deg}=\{D \in \operatorname{Div}(\mathcal{X}): \operatorname{deg}(D)=0\} \subset \operatorname{Div}(\mathcal{X})
$$

Every function has the same number of zeroes and poles, so

$$
\operatorname{Prin}(\mathcal{X}) \subseteq \operatorname{Div}^{0}(\mathcal{X}) \quad \text { and } \quad \operatorname{Prin}(\mathcal{X})(\mathbb{k}) \subseteq \operatorname{Div}^{0}(\mathcal{X})(\mathbb{k})
$$

The inclusion is strict for almost all curves: not every degree-0 divisor is principal!

Why are they called divisors?

Idea: degree-0 divisors are "parts of functions".
Example: Consider the elliptic curve $\mathcal{E}: y^{2}=x^{3}+1$. The divisors

$$
D_{1}=(0,1)-\infty \quad \text { and } \quad D_{2}=(0,-1)-\infty
$$

are both in $\operatorname{Div}^{0}(\mathcal{E})$. Neither is principal, but

$$
D_{1}+D_{2}=\operatorname{div}(x) .
$$

So we can view D_{1} and D_{2} as being "parts" (or even "factors") of the function x...

Degrees of divisor classes

The deg homomorphism is well-defined on divisor classes:

$$
\begin{aligned}
\operatorname{deg}: \operatorname{Pic}(\mathcal{X}) & \longrightarrow \mathbb{Z} \\
{[D] } & \longmapsto \operatorname{deg}(D)
\end{aligned}
$$

(since $\operatorname{deg}(\operatorname{div}(f))=0$ for all f).
Hence, $\operatorname{Div}^{0}(\mathcal{X})$ splits up into divisor classes: we set

$$
\begin{aligned}
\operatorname{Pic}^{0}(\mathcal{X}): & =\operatorname{ker}(\operatorname{deg}: \operatorname{Pic}(\mathcal{X}) \rightarrow \mathbb{Z}) \\
& =\operatorname{Div}^{0}(\mathcal{X}) / \operatorname{Prin}(\mathcal{X}) .
\end{aligned}
$$

Structure of the Picard group

If we fix any "base point" P on \mathcal{X}, then the map $D \mapsto(D-\operatorname{deg}(D) \infty, \operatorname{deg}(D))$ defines isomorphisms

$$
\begin{aligned}
& \operatorname{Div}(\mathcal{X}) \cong \\
& \operatorname{Pic}(\mathcal{X}) \cong \operatorname{Div}^{0}(\mathcal{X}) \times \mathbb{Z} \\
& \operatorname{Pic}^{0}(\mathcal{X}) \times \mathbb{Z}
\end{aligned}
$$

The "interesting" stuff all happens in $\operatorname{Pic}^{0}(\mathcal{X})$, which has the structure of an abelian variety: a geometric object defined by polynomial equations in projective coordinates, with a polynomial group law.
(Stop and think about what this means for a minute: divisor classes can be defined by tuples of coordinates, and addition of divisor classes modulo linear equivalence defined by polynomial formulæ in those coordinates!)

Differentials

Differentials

Differentials on \mathcal{X} look like $g d f$, where g and f are in $\mathbb{k}(\mathcal{X})$, with

$$
g_{1} d f_{1}=g_{2} d f_{2} \Longleftrightarrow \frac{g_{2}}{g_{1}}=\frac{d f_{1}}{d f_{2}} \quad(\leftarrow \text { usual derivative }) .
$$

Differentials

- obey the usual product rule: $d(f g)=f d g+g d f ;$
- are $\mathbb{\mathbb { k }}$-linear: $d(\alpha f+\beta g)=\alpha d f+\beta d g$ for α, β in $\mathbb{\mathbb { k }} ;$
- and differentials of constants are zero: $d \alpha=0$ for α in $\overline{\mathbb{k}}$.

Example: on $\mathcal{E}: y^{2}=x^{3}+1$, we have

$$
2 y d y=3 x^{2} d x
$$

Differentials are not functions on \mathcal{X}, but they do give linear functions on the tangent spaces of \mathcal{X}. They are very helpful in linearizing problems on \mathcal{X}.

The space of differentials

The differentials on \mathcal{X} form a one-dimensional $\overline{\mathbb{k}}(\mathcal{X})$-vector space, $\Omega(\mathcal{X})$.
That is: if we fix some differential $d x$, then every other differential in $\Omega(\mathcal{X})$ is equal to $f d x$ for some function f.

On the other hand: $\Omega(\mathcal{X})$ is an infinite-dimensional $\overline{\mathbb{k}}$-vector space.

Divisors of differentials

Differentials have divisors!
First, for each point P of \mathcal{X}, we fix a local parameter t_{p} near P on \mathcal{X} : ie any function with a simple zero at P.

If ω is a differential then $\omega / d t_{p}$ is a function, so we set

$$
\operatorname{ord}_{p}(\omega):=\operatorname{ord}_{p}\left(\omega / d t_{p}\right)
$$

(perhaps amazingly, $\operatorname{ord}_{p}(\omega)$ is independent of the choice of t_{p}) and

$$
\operatorname{div}(\omega):=\sum_{P \in \mathcal{X}} \operatorname{ord} p(\omega)(P)
$$

Example on an elliptic curve

What is the divisor of $d x$ on an elliptic curve $\mathcal{E}: y^{2}=f(x)$?
At points (α, β) where $\beta \neq 0$, we can use $t_{(\alpha, \beta)}=x-\alpha$:

$$
\operatorname{ord}_{(\alpha, \beta)}(d x)=\operatorname{ord}_{(\alpha, \beta)}\left(\frac{d x}{d(x-\alpha)}\right)=\operatorname{ord}_{(\alpha, \beta)}(1)=0
$$

If $\beta=0$ then $x-\alpha$ is not a local parameter at $(\alpha, 0)$ (it has a double zero), but we can use $t_{(\alpha, 0)}=y$; hence

$$
\operatorname{ord}_{(\alpha, 0)}(d x)=\operatorname{ord}_{(\alpha, 0)}\left(\frac{d x}{d y}\right)=\operatorname{ord}_{(\alpha, 0)}\left(\frac{2 y}{f^{\prime}(x)}\right)=1
$$

At infinity: we know $\operatorname{ord}_{\infty}(x)=-2$ and $\operatorname{ord}_{\infty}(y)=-3$, so we can take $t_{\infty}=x / y$:

$$
\operatorname{ord}_{\infty}(d x)=\operatorname{ord}_{\infty}\left(\frac{d x}{d(x / y)}\right)=\operatorname{ord}_{\infty}\left(\frac{2 y f(x)}{2 f(x)-x f^{\prime}(x)}\right)=-3
$$

Canonical divisors

Note that

$$
\operatorname{div}(f \omega)=\operatorname{div}(\omega)+\operatorname{div}(f) \quad \text { for all } f \in \overline{\mathbb{k}}(\mathcal{X}), \omega \in \Omega(\mathcal{X})
$$

So: the divisors of differentials on \mathcal{X} are all in the same divisor class, which we call the canonical class, $[K]$.

Any divisor in $[K]$ is called a canonical divisor.
On the hyperelliptic curve $\mathcal{H}: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$, we have

$$
K=\operatorname{div}(d x)= \begin{cases}\sum_{i=1}^{d}\left(\alpha_{i}, 0\right)-3 \infty & d \text { odd } \\ \sum_{i=1}^{d}\left(\alpha_{i}, 0\right)-2\left(\infty_{+}+\infty_{-}\right) & d \text { even }\end{cases}
$$

Nonconstant differentials with no poles

Consider the elliptic case: if $y^{2}=f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$, then

$$
\operatorname{div}(d x)=\left(\alpha_{1}, 0\right)+\left(\alpha_{2}, 0\right)+\left(\alpha_{3}, 0\right)-3 \infty
$$

Notice that $\operatorname{div}(y)=\operatorname{div}(d x)$, so

$$
\operatorname{div}\left(\frac{d x}{y}\right)=0
$$

The differential $d x / y$ is a nonconstant differential with no poles (or zeroes!).

Regular differentials

We call differentials with no poles regular differentials.
The regular differentials on \mathcal{X} form a (finite-dimensional) \mathbb{k}-vector space

$$
\Omega^{1}(\mathcal{X})=\{\omega \in \Omega(\mathcal{X}): \omega \text { is regular }\}
$$

The genus of \mathcal{X} is defined to be the dimension of $\Omega^{1}(\mathcal{X})$.
Think: the genus gives a first classification of the intrinsic algebraic complexity of a curve.

Genus of hyperelliptic curves

For hyperelliptic curves

$$
\mathcal{X}: y^{2}=f(x)=x^{d}+\cdots
$$

we have

$$
\Omega^{1}(\mathcal{X})=\left\langle\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{\lfloor(d-1) / 2-1\rfloor} d x}{y}\right\rangle
$$

so

$$
g(\mathcal{X})=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

Explicit regular differentials

More generally, if \mathcal{X} / \mathbb{k} is a nonsingular plane curve of genus g defined by

$$
\mathcal{X}: F(x, y)=0
$$

then its regular differentials are

$$
\Omega^{1}(\mathcal{X})=\left\langle\frac{x^{i}}{(\partial F / \partial y)(x, y)} d x\right\rangle_{i=0}^{g-1}
$$

Fact: for any curve \mathcal{X}, we have $\operatorname{deg}(K)=2 g-2$.

Riemann-Roch

Into space!

Let's get back to functions on \mathcal{X}.
Evaluating a single function at points maps us from \mathcal{X} to \mathbb{P}^{1} (the poles of the function map to ∞).

Evaluating a tuple (f_{1}, \ldots, f_{n}) of functions gives us a map

$$
P \mapsto\left(f_{1}(P): \cdots: f_{n}(P): 1\right) \in \mathbb{P}^{n} .
$$

We want to control behaviour at infinity, hence the poles of the f_{i}.

Riemann-Roch Spaces

A divisor $D=\sum_{P} n_{P} P$ is effective if all of the $n_{P} \geq 0$. We define

$$
L(D):=\{f \in \mathbb{k}(\mathcal{X}): D+\operatorname{div}(f) \text { is effective }\} \cup\{0\} .
$$

...So $L(D)$ consists of the functions whose poles are contained in D.

$$
L\left(D_{1}+D_{2}\right) \supseteq L\left(D_{1}\right) L\left(D_{2}\right) \quad \text { for any effective } D_{1}, D_{2} \text {. }
$$

Note: if $\mathcal{X}=\mathbb{P}^{1}$, then $L(d \infty)=\{$ polynomials of degree $\leq d\}$.

Dimension of Riemann-Roch Spaces

Fact: $L(D)$ is a finite-dimensional \mathbb{k}-vector space. What is its dimension?

- If $\operatorname{deg} D<0$, then $D+\operatorname{div}(f)$ can never be effective $\Longrightarrow \operatorname{dim} L(D)=0$ when $\operatorname{deg} D<0$.
- $L(0)=\mathbb{k}$ (functions with no poles are constant), $\Longrightarrow \operatorname{dim} L(0)=1$.
- More generally, $L(D)=$?

The Riemann-Roch Theorem

The Riemann-Roch theorem tells us that for any D,

$$
\operatorname{dim} L(D)-\operatorname{dim} L(K-D)=\operatorname{deg} D-g+1
$$

Recall that K is (any) canonical divisor, and

$$
L(K-D) \longleftrightarrow\left\{\omega \in \Omega^{1}(\mathcal{X}): \omega=0 \text { on } D\right\}
$$

In particular, for "large enough" D, we have $L(K-D)=0$ and hence $\operatorname{dim} L(D)=\operatorname{deg} D-g+1$.

Weierstrass models of elliptic curves

Suppose \mathcal{E} is an abstract elliptic curve over \mathbb{k}, and let $\mathcal{O} \in \mathcal{E}(\mathbb{k})$.
We have $K=0$, so Riemann-Roch gives $\operatorname{dim} L(D)=\operatorname{deg} D$ for effective D.

- $L(\mathcal{O})=\mathbb{k}=\langle 1\rangle$ (constants)
- $\operatorname{dim} L(2 \mathcal{O})=2 \Longrightarrow L(2 \mathcal{O})=\langle 1, x\rangle$ for some x
- $\operatorname{dim} L(3 \mathcal{O})=3 \Longrightarrow L(3 \mathcal{O})=\langle 1, x, y\rangle$ for some y
- $L(4 \mathcal{O})=\left\langle 1, x, x^{2}, y\right\rangle$
- $L(5 \mathcal{O})=\left\langle 1, x, x^{2}, y, x y\right\rangle$
- $L(6 \mathcal{O})=\left\langle 1, x, x^{2}, x^{3}, y, x y, y^{2}\right\rangle$, but $\operatorname{dim} L(6 \mathcal{O})=6$, so there must be a nontrivial linear relation between the 7 functions $1, x, x^{2}, x^{3}, y, x y, y^{2}$.
\Longrightarrow Weierstrass equation $y^{2}+a_{1} x y+a_{3} y=a_{0} x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.
$L(3 \mathcal{O})$ gives us an embedding $\mathcal{E} \rightarrow \mathbb{P}^{2}=\mathbb{P}(L(3 \mathcal{O}))$ defined by $P \mapsto(x(P): y(P): 1)$ and $\mathcal{O} \mapsto \infty=(0: 1: 0)$.

Application: canonical models for genus 2 curves

Suppose \mathcal{X} is a curve of genus 2 .

- We have $\operatorname{deg} K=2 g-2=2$, so $L(-n K)=0$ for $n>1$.
- Apply R-R to $D=0 \Longrightarrow \operatorname{dim} L(K)=2$, so $L(K)=\langle 1, x\rangle$ for some x.
- Apply R-R to $D=n K, n>1: \operatorname{dim} L(n K)=2 n-1$ for $n>1$.
- $L(2 K) \supseteq\left\langle 1, x, x^{2}\right\rangle$ but $\operatorname{dim} L(2 K)=3$, so $L(2 K)=\left\langle 1, x, x^{2}\right\rangle$.
- $L(3 K) \supseteq\left\langle 1, x, x^{2}, x^{3}\right\rangle$ but $\operatorname{dim} L(3 K)=5$, so $L(3 K)=\left\langle 1, x, x^{2}, x^{3}, y\right\rangle$ for some new y
-... $L(4 K)=\left\langle 1, x, x^{2}, x^{3}, x^{4}, y, x y\right\rangle$
-...L(5K) $=\left\langle 1, x, x^{2}, x^{3}, x^{4}, x^{5}, y, x y, x^{2} y\right\rangle$

...Every genus 2 curve is hyperelliptic

Now $L(6 K) \supseteq\left\langle 1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, y, x y, x^{2} y, x^{3} y, y^{2}\right\rangle$, but R-R says $\operatorname{dim} L(6 K)=11$, so there is a nontrivial \mathbb{k}-linear relation between the 12 functions:

$$
y^{2}+\sum_{i=0}^{3}\left(a_{i} x^{i} y\right)=\sum_{i=0}^{6} b_{i} x^{i} \quad \text { with the } a_{i}, b_{i} \in \mathbb{k}
$$

$\operatorname{char}(\mathbb{k}) \neq 2$: replace y with $y-\frac{1}{2} \sum_{i=0}^{3} a_{i} x^{i}$ to get $y^{2}=\sum_{i=0}^{6} f_{i} x^{i}$.
Now $P \mapsto(x(P), y(P))$ defines a map from \mathcal{X} into the plane; its image is the hyperelliptic curve

$$
\mathcal{X}: y^{2}=f(x)=\sum_{i=0}^{6} f_{i} x^{i}
$$

Hyperelliptic Jacobians

Hyperelliptic Jacobians

Suppose $\mathcal{X}: y^{2}=f(x)$ is hyperelliptic of genus $g>1$.
From now on, we suppose f has odd degree,
so \mathcal{X} has a single point ∞ at infinity.
Even degree case is (only) slightly more complicated.
Goal: to define a compact (and algebraic) representation for $\operatorname{Pic}^{0}(\mathcal{X})$.

Reduced representatives for classes

If $[D]$ is in $\operatorname{Pic}^{0}(\mathcal{X})$, then $[D]$ has a unique reduced representative:

$$
[D]=\left[P_{1}+\cdots+P_{r}-r \infty\right]
$$

for some $P_{1}, \ldots, P_{r} \in \mathcal{X}$ depending on $[D]$ (not D) such that

- $P_{i} \neq \infty$ and $P_{i} \neq \iota\left(P_{j}\right)$ for $i \neq j$ (semi-reducedness)
- $r \leq g$ (reducedness)

$$
[D] \in \operatorname{Pic}^{0}(\mathcal{X})(\mathbb{k}) \Longleftrightarrow P_{1}+\cdots+P_{r} \in \operatorname{Div}(\mathcal{X})(\mathbb{k})
$$

Note: the individual P_{i} need not be in $\mathcal{X}(\mathbb{k})$!

Why?

Riemann-Roch guarantees the existence of the reduced representative.
If $[D]$ is in $\operatorname{Pic}^{0}(\mathcal{X})$, then applying Riemann-Roch to $D+g \infty$ yields a function f such that $D+g \infty+\operatorname{div}(f)=D^{\prime}$ is effective; so $\left[D^{\prime}-g \infty\right]=[D]$ with $\operatorname{deg} D^{\prime}=g$.
$D^{\prime}-g \infty$ is almost a reduced representative:
it remains to remove any $P+\iota(P)-2 \infty=\operatorname{div}(x-x(P))$ from D^{\prime}.

The Mumford representation

Suppose we have a class $[D]$ in $\operatorname{Pic}^{0}(\mathcal{X})(\mathbb{k})$ with reduced representative

$$
D=P_{1}+\cdots+P_{r}-r \infty \in \operatorname{Div}^{0}(\mathcal{X})(\mathbb{k})
$$

The Mumford representation of [D] is the (unique) pair of polynomials $\langle a(x), b(x)\rangle$ in $\mathbb{k}[x]$ such that

- $a(x)=\prod_{i=1}^{r}\left(x-x\left(P_{i}\right)\right)$, and
- $b\left(x\left(P_{i}\right)\right)=y\left(P_{i}\right)$ for $1 \leq i \leq r$;
for each of the x-coordinates appearing as a root of a, evaluating b gives the corresponding y-coordinate.

If necessary, compute b by Lagrange interpolation.

The Mumford representation

If $\langle a(x), b(x)\rangle$ represents a class on $\mathcal{X}: y^{2}=f(x)$, then

1. a is monic of degree $r \leq g$, and
2. b satisfies $\operatorname{deg} b<r$ and $b^{2} \equiv f(\bmod a)$.

Theorem: Any pair $\langle a(x), b(x)\rangle$ in $\mathbb{k}[x]^{2}$ satisfying these conditions represents a divisor class in $\operatorname{Pic}^{0}(\mathcal{X})(\mathbb{k})$.
\Longrightarrow identify divisor classes with Mumford reps of their reduced representatives: we simply write $[D]=\langle a, b\rangle$.

We associate $\langle a(x), b(x)\rangle$ with the ideal $(a(x), y-b(x))$.

Hyperelliptic Jacobians

We can collect the Mumford representations by degree $0 \leq d \leq g$:

$$
M_{d}:=\left\{\langle a, b\rangle: \operatorname{deg}(b)<\operatorname{deg}(a)=d, b^{2} \equiv f(\bmod a)\right\} .
$$

We can view the coefficients of $a(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$ and $b(x)=b_{d-1} x^{d-1}+\cdots+b_{0}$ as coordinates on $\mathbb{A}^{2 d}$.
$b^{2}(\bmod a)$ and $f(\bmod a)$ are polynomials of degree $d-1$ in $\mathbb{k}\left[a_{i}, b_{i}\right][x]$; the vanishing of their coefficients defines d independent equations in the $2 d$ coordinates, cutting out M_{d} as a d-dimensional subvariety in $\mathbb{A}^{2 d}$.

- M_{0} is a point;
- M_{1} is an affine copy of \mathcal{X};
- $\# M_{d}\left(\mathbb{F}_{q}\right)=O\left(q^{d}\right)$ for $0 \leq d \leq g$.

The Jacobian

Glueing together M_{0}, \ldots, M_{g}, we give $\operatorname{Pic}^{0}(\mathcal{X})$ the structure of a g-dimensional algebraic variety \mathcal{J}, called the Jacobian.

Over \mathbb{F}_{q}, we have $\# \mathcal{J} \mathcal{X}=O\left(q^{9}\right)$ (more precision later).
We want an expression of the group law on \mathcal{J} ́ in terms of its coordinates; Cantor's algorithm does this using an explicit form of Riemann-Roch.

Cantor's algorithm: addition on $\mathcal{J}_{\mathcal{X}}$

```
Input: Reduced divisors \(D_{1}=\left\langle a_{1}, b_{1}\right\rangle\) and \(D_{2}=\left\langle a_{2}, b_{2}\right\rangle\) on \(\mathcal{X}\).
Output: A reduced \(D_{3}=\left\langle a_{3}, b_{3}\right\rangle\) s.t. \(\left[D_{3}\right]=\left[D_{1}+D_{2}\right]\) in \(\operatorname{Pic}^{0}(\mathcal{X})\).
    1. \(\left(d, u_{1}, u_{2}, u_{3}\right):=\operatorname{XGCD}\left(a_{1}, a_{2}, b_{1}+b_{2}\right)\)
        \(/ /\) so \(d=\operatorname{gcd}\left(a_{1}, a_{2}, b_{1}+b_{2}\right)=u_{1} a_{1}+u_{2} a_{2}+u_{3}\left(b_{1}+b_{2}\right)\).
    2. Set \(a_{3}:=a_{1} a_{2} / d^{2}\);
    3. Set \(b_{3}:=b_{1}+\left(u_{1} a_{1}\left(b_{2}-b_{1}\right)+u_{3}\left(f-b_{1}^{2}\right)\right) / d\left(\bmod a_{3}\right)\);
    4. If \(\operatorname{deg} a_{3} \leq g\) then go to Step 9 ;
    5. Set \(\tilde{a}_{3}:=a_{3}\) and \(\tilde{b}_{3}:=b_{3}\);
    6. Set \(a_{3}:=\left(f-b_{3}^{2}\right) / a_{3}\);
    7. Let \(\left(Q, b_{3}\right):=\) Quotrem \(\left(-b_{3}, a_{3}\right)\);
    8. While \(\operatorname{deg} a_{3}>g\)
8a Set \(t:=\tilde{a}_{3}+Q\left(b_{3}-\tilde{b}_{3}\right)\);
8 b Set \(\tilde{b}_{3}:=b_{3}, \tilde{a}_{3}=a_{3}\), and \(a_{3}:=t\);
    \(8 c\) Let \(\left(Q, b_{3}\right):=\) Quotrem \(\left(-b_{3}, a_{3}\right)\);
```

 9. Return \(\left\langle a_{3}, b_{3}\right\rangle\).
 - Step 1: $d\left(x\left(P_{i}\right)\right)=0$ iff $P_{i}=\iota\left(Q_{j}\right)$ for some j
- Steps 2, 3: sum D_{1} and D_{2}, remove contribution of d
\longrightarrow pre-reduced D_{3} such that
$\left[D_{3}\right]=\left[D_{1}+D_{2}\right]$
- Loop: reduces degree of the representative until reduced.
- Exercise: how many steps until the result is reduced?

Embeddings of Jacobians

The Mumford representation lets us compute with a hyperelliptic Jacobian by dividing it up into affine pieces:

$$
\mathcal{J} \mathcal{X}=M_{0} \cup M_{1} \cup \cdots \cup M_{g} .
$$

In fact, $\mathcal{J} \mathcal{X}$ is projective (it's an abelian variety)
-so what are its projective embeddings?

