Hyperelliptic Curves and their Jacobians

1

Benjamin Smith Isogeny school, online, 2021

Inria + École polytechnique, France

Today / Class 1:

The basic geometry and arithmetic of hyperelliptic curves and their Jacobians. Genus 2 is an important special case, but it helps to see the broader context.

Tomorrow / Class 2:

- Cryptographic aspects
- First steps in genus-2 isogeny-based cryptography

Recall...

We work over a perfect field $\Bbbk.$ This means

- + Every irreducible polynomial over \Bbbk has distinct roots in $\overline{\Bbbk}$
- Equivalently: Either char(\Bbbk) = 0, or char(\Bbbk) = p and the Frobenius $\alpha \mapsto \alpha^p$ is an automorphism.

Examples:

- 1. Finite fields: $\mathbf{k} = \mathbf{F}_q$ (what we're really interested in)
- 2. Characteristic 0: $\mathbb{k} = \mathbb{Q}, \mathbb{Q}(\sqrt{13}), \mathbb{Q}(t), \mathbb{Q}_p, \mathbb{R}, \mathbb{C}, ...$
- 3. ...But not (e.g.) $\mathbb{k} = \mathbb{F}_q(t)$

(Because $x^p - t$ is irreducible, but has one multiplicity-p root $t^{1/p}$ over $\overline{\mathbb{F}_q(t)}$). Also, $\alpha \mapsto \alpha^p$ is not an automorphism of $\mathbb{F}_q(t)$: there is no preimage of t.) A thing (a point, a set, a curve, a function) is **defined over** \Bbbk if it is fixed by $\operatorname{Gal}(\overline{\Bbbk}/\Bbbk)$.

Example: the set $\{1 + \sqrt{-1}, 1 - \sqrt{-1}\} \subset \mathbb{Q}(\sqrt{-1})$ is defined over \mathbb{Q} .

If $\mathbb{k} = \mathbb{F}_q$, then $\text{Gal}(\overline{\mathbb{k}}/\mathbb{k})$ is (topologically) generated by the *q*-power Frobenius, so the objects defined over \mathbb{F}_q are those fixed by/commuting with Frobenius.

If X is a thing, then $X(\mathbb{k})$ denotes its elements/points defined over \mathbb{k} .

Hyperelliptic Curves

From elliptic to hyperelliptic curves

So far, we've considered cryptosystems built from elliptic curves and their isogenies.

But what's so special about elliptic curves?

More generally: we could try working with any **algebraic curve** \mathcal{X} over \Bbbk .

- $\cdot \ \mathcal{X} = \mathbb{P}^1 = a \text{ line}$
- $\mathcal{X} =$ an elliptic curve $\mathcal{E} : y^2 = x^3 + Ax + B$
- $\mathcal{X} : y^2 = f(x)$ with deg f > 4 (hyperelliptic curves)
- ... More generally, a plane curve $\mathcal{X} : F(x, y) = 0$ in \mathbb{A}^2

Questions: What kinds of groups do you get? What are the analogues of isogenies?

Hyperelliptic curves:

$$\mathcal{X}: y^2 = f(x) = x^d + \cdots$$

with f squarefree, of degree d > 4. (NB: $d = 1, 2 \implies$ conics; $d = 3, 4 \implies$ elliptic curves.)

.

Hyperelliptic involution:

$$\iota: (x, y) \longmapsto (x, -y).$$

Key fact: $P \mapsto x(P)$ defines a double cover $\mathcal{X} \to \mathcal{X}/\langle \iota \rangle \cong \mathbb{P}^1$. Point(s) at infinity:

> odd $d \implies$ one point ∞ at infinity. even $d \implies$ two points ∞_+, ∞_- at infinity.

If $\mathcal{X} : F(x, y) = 0$ is a plane curve over \Bbbk , then its **function field** is

 $\Bbbk(\mathcal{X}) = \Bbbk(x)[y]/(F(x,y)).$

Elements: rational fractions in x and y, modulo the curve equation F(x, y) = 0. For more general, non-plane curves, $\Bbbk(\mathcal{X}) :=$ fraction field of the coordinate ring.

Divisors

Rational functions on \mathcal{X} have poles and zeroes:

zeroes of *f* are the points *P* on \mathcal{X} where f(P) = 0. **poles** of *f* are the points *P* on \mathcal{X} where $f(P) = \infty$.

Note: (zeroes and poles can occur with multiplicity > 1.) **Theorem:** If *f* is a nonzero function in $\overline{\Bbbk}(\mathcal{X})$, then

- 1. f has only finitely many zeroes and poles, and
- 2. counted with multiplicity, $\# \operatorname{zeroes}(f) = \# \operatorname{poles}(f)$.

Orders of vanishing

The **order of vanishing** of a nonzero function f at a point P of \mathcal{X} is

$$\operatorname{ord}_{P}(f) := \begin{cases} n & \text{if } f \text{ has a zero of multiplicity } n \text{ at } P \\ -n & \text{if } f \text{ has a pole of multiplicity } n \text{ at } P \\ 0 & \text{otherwise} \end{cases}$$

Useful rules:

- $\operatorname{ord}_P(fg) = \operatorname{ord}_P(f) + \operatorname{ord}_P(g)$ for all f, g, P
- $\operatorname{ord}_P(f/g) = \operatorname{ord}_P(f) \operatorname{ord}_P(g)$ for all f, g, P
- $\operatorname{ord}_{P}(\alpha) = 0$ for all constants $\alpha \neq 0$ in $\overline{\Bbbk}$
- ord_P $(\sum_{i} \alpha_{i} x^{a_{i}} y^{b_{i}}) = n$ if the plane curve $\sum_{i} \alpha_{i} x^{a_{i}} y^{b_{i}} = 0$ intersects \mathcal{X} with multiplicity n at P

Each function $f \neq 0$ on \mathcal{X} has an associated **principal divisor**

$$\operatorname{div}(f) = \sum_{P \in \mathcal{X}(\overline{\mathbb{F}}_q)} \operatorname{ord}_P(f)(P).$$

The sum is **formal**: there is no addition law on the points.

1. $\operatorname{div}(f) = 0$ if and only if f is constant (in $\overline{\mathbb{k}}_q \setminus \{0\}$); 2. $\operatorname{div}(fg) = \operatorname{div}(f) + \operatorname{div}(g)$ and $\operatorname{div}(f/g) = \operatorname{div}(f) - \operatorname{div}(g)$; 3. $\operatorname{div}(f) = \operatorname{div}(g) \iff f = \alpha g$ for some $\alpha \neq 0$ in $\overline{\mathbb{F}}_q$. Since $\operatorname{div}(fg) = \operatorname{div}(f) + \operatorname{div}(g)$, the set of principal divisors forms a group

$$\operatorname{Prin}(\mathcal{X}) := \left\{ \operatorname{div}(f) : f \in \overline{\Bbbk}(\mathcal{X}) \right\} \,.$$

Functions are determined by their principal divisors, up to constant factors. Or, if you like exact sequences:

$$1 \longrightarrow \overline{\Bbbk}^{\times} \longrightarrow \overline{\Bbbk}(\mathcal{X})^{\times} \longrightarrow \operatorname{Prin}(\mathcal{X}) \longrightarrow 0$$
.

Consider the elliptic curve $\mathcal{E} : y^2 = x^3 + 1$ over \mathbb{F}_{13} .

•
$$\operatorname{div}(x) = (0, 1) + (0, -1) - 2\infty;$$

•
$$\operatorname{div}(y) = (-1, 0) + (4, 0) + (-3, 0) - 3\infty;$$

•
$$\operatorname{div}(x^2/y) = 2(0, -1) + 2(0, 1) - (-1, 0) - (4, 0) - (-3, 0) - \infty;$$

• div
$$\left(\frac{x^2-y-1}{xy}\right) = (0,-1) + (2,3) + \infty - (0,1) - (-3,0) - (4,0).$$

More generally:

If f(x, y) = 0 is the line through P and Q, then $\operatorname{div}(f) = P + Q + (\ominus(P \oplus Q)) - 3\infty$. (Here, \oplus means the group law on \mathcal{E} , and \ominus is negation.) Divisors on \mathcal{X} are *formal sums* of points in $\mathcal{X}(\overline{\Bbbk})$ with *arbitrary* coefficients in \mathbb{Z} . We define a (free abelian, infinitely generated) group

$$\operatorname{Div}(\mathcal{X}) := \Big\{ \sum_{P \in \mathcal{X}(\overline{\mathbb{F}}_q)} n_P(P) \Big\},$$

with the n_P in \mathbb{Z} , and only finitely many $n_P \neq 0$.

Of course, $Prin(\mathcal{X})$ is a subgroup of $Div(\mathcal{X})$.

The group $\text{Div}(\mathcal{X})$ is way too big, and tells us nothing about the geometry of \mathcal{X} . We work with the **Picard group**: the quotient

 $\operatorname{Pic}(\mathcal{X}) := \operatorname{Div}(\mathcal{X})/\operatorname{Prin}(\mathcal{X}).$

Elements are divisor classes:

 $[D] = \{D + \operatorname{div}(f) : f \in \overline{\Bbbk}\}.$

If D_1 and D_2 are in the same class, then we say they are *linearly equivalent*:

 $D_1 \sim D_2 \iff D_1 = D_2 + \operatorname{div}(f)$ for some $f \in \overline{\Bbbk}(\mathcal{X})$.

Degree

We have a degree homomorphism deg : $\operatorname{Div}(\mathcal{X}) \to \mathbb{Z}$,

$$\mathsf{deg}(\sum_P n_P(P)) = \sum_P n_P$$
 .

Its kernel is a subgroup of $\text{Div}(\mathcal{X})$, denoted $\text{Div}^0(\mathcal{X})$:

$$\mathrm{Div}^0(\mathcal{X}) := \mathsf{ker} \, \mathsf{deg} = \{ D \in \mathrm{Div}(\mathcal{X}) : \mathsf{deg}(D) = 0 \} \subset \mathrm{Div}(\mathcal{X}) \,.$$

Every function has the same number of zeroes and poles, so

$$\operatorname{Prin}(\mathcal{X}) \subseteq \operatorname{Div}^0(\mathcal{X}) \quad \text{and} \quad \operatorname{Prin}(\mathcal{X})(\Bbbk) \subseteq \operatorname{Div}^0(\mathcal{X})(\Bbbk) \,.$$

The inclusion is strict for almost all curves: **not every degree-0 divisor is principal!**

Idea: degree-0 divisors are "parts of functions".

Example: Consider the elliptic curve $\mathcal{E} : y^2 = x^3 + 1$. The divisors

$$D_1 = (0, 1) - \infty$$
 and $D_2 = (0, -1) - \infty$

are both in $\operatorname{Div}^0(\mathcal{E})$. Neither is principal, but

 $D_1+D_2=\operatorname{div}(X)\,.$

So we can view D_1 and D_2 as being "parts" (or even "factors") of the function x...

The deg homomorphism is well-defined on divisor classes:

 $deg: \operatorname{Pic}(\mathcal{X}) \longrightarrow \mathbb{Z}$ $[D] \longmapsto deg(D)$

 $(\operatorname{since} \operatorname{deg}(\operatorname{div}(f)) = 0 \text{ for all } f).$

Hence, $\operatorname{Div}^0(\mathcal{X})$ splits up into divisor classes: we set

$$\operatorname{Pic}^{0}(\mathcal{X}) := \operatorname{\mathsf{ker}}(\operatorname{\mathsf{deg}} : \operatorname{Pic}(\mathcal{X}) \to \mathbb{Z})$$

= $\operatorname{Div}^{0}(\mathcal{X})/\operatorname{Prin}(\mathcal{X})$.

Structure of the Picard group

If we fix any "base point" P on \mathcal{X} , then the map $D \mapsto (D - \deg(D)\infty, \deg(D))$ defines isomorphisms

 $\mathrm{Div}(\mathcal{X}) \stackrel{\cong}{\longleftrightarrow} \mathrm{Div}^0(\mathcal{X}) \times \mathbb{Z}$ $\mathrm{Pic}(\mathcal{X}) \stackrel{\cong}{\longleftrightarrow} \mathrm{Pic}^0(\mathcal{X}) \times \mathbb{Z}.$

The "interesting" stuff all happens in $\operatorname{Pic}^{0}(\mathcal{X})$, which has the structure of an **abelian variety**: a geometric object defined by polynomial equations in projective coordinates, with a polynomial group law.

(Stop and think about what this means for a minute: divisor classes can be defined by tuples of coordinates, and addition of divisor classes modulo linear equivalence defined by polynomial formulæ in those coordinates!)

Differentials

Differentials

Differentials on \mathcal{X} look like *gdf*, where *g* and *f* are in $\Bbbk(\mathcal{X})$, with

$$g_1 df_1 = g_2 df_2 \iff \frac{g_2}{g_1} = \frac{df_1}{df_2} \quad (\leftarrow \text{ usual derivative}).$$

Differentials

- obey the usual **product rule**: d(fg) = fdg + gdf;
- are $\overline{\mathbb{k}}$ -linear: $d(\alpha f + \beta g) = \alpha df + \beta dg$ for α, β in $\overline{\mathbb{k}}$;
- and differentials of constants are zero: $d\alpha = 0$ for α in \overline{k} .

Example: on $\mathcal{E} : y^2 = x^3 + 1$, we have

$$2ydy = 3x^2dx$$

Differentials are **not functions** on \mathcal{X} , but they do give linear functions on the tangent spaces of \mathcal{X} . They are very helpful in *linearizing* problems on \mathcal{X} .

The differentials on \mathcal{X} form a one-dimensional $\overline{\mathbb{k}}(\mathcal{X})$ -vector space, $\Omega(\mathcal{X})$. That is: if we fix some differential dx, then every other differential in $\Omega(\mathcal{X})$ is equal to fdx for some function f.

On the other hand: $\Omega(\mathcal{X})$ is an infinite-dimensional $\overline{\Bbbk}$ -vector space.

Differentials have divisors!

First, for each point P of \mathcal{X} , we fix a *local parameter* t_P near P on \mathcal{X} : ie any function with a simple zero at P.

If ω is a differential then ω/dt_P is a function, so we set

 $\operatorname{ord}_P(\omega) := \operatorname{ord}_P(\omega/dt_P)$

(perhaps amazingly, $ord_P(\omega)$ is independent of the choice of t_P) and

$$\operatorname{div}(\omega) := \sum_{P \in \mathcal{X}} \operatorname{ord}_P(\omega)(P).$$

Example on an elliptic curve

What is the divisor of dx on an elliptic curve $\mathcal{E} : y^2 = f(x)$?

At points (α, β) where $\beta \neq 0$, we can use $t_{(\alpha,\beta)} = x - \alpha$:

$$\operatorname{ord}_{(\alpha,\beta)}(dx) = \operatorname{ord}_{(\alpha,\beta)}(\frac{dx}{d(x-\alpha)}) = \operatorname{ord}_{(\alpha,\beta)}(1) = 0.$$

If $\beta = 0$ then $x - \alpha$ is not a local parameter at $(\alpha, 0)$ (it has a double zero), but we can use $t_{(\alpha,0)} = y$; hence

$$\operatorname{ord}_{(\alpha,0)}(dx) = \operatorname{ord}_{(\alpha,0)}(\frac{dx}{dy}) = \operatorname{ord}_{(\alpha,0)}(\frac{2y}{f'(x)}) = 1.$$

At infinity: we know $\operatorname{ord}_{\infty}(x) = -2$ and $\operatorname{ord}_{\infty}(y) = -3$, so we can take $t_{\infty} = x/y$:

$$\operatorname{ord}_{\infty}(dx) = \operatorname{ord}_{\infty}(\frac{dx}{d(x/y)}) = \operatorname{ord}_{\infty}(\frac{2yf(x)}{2f(x) - xf'(x)}) = -3.$$

Note that

$$\operatorname{div}(f\omega) = \operatorname{div}(\omega) + \operatorname{div}(f) \quad \text{for all } f \in \overline{\Bbbk}(\mathcal{X}), \omega \in \Omega(\mathcal{X}) \,.$$

So: the divisors of differentials on \mathcal{X} are all in **the same divisor class**, which we call the **canonical class**, [K].

Any divisor in [K] is called a **canonical divisor**.

On the hyperelliptic curve $\mathcal{H}: y^2 = f(x) = \prod_{i=1}^d (x - \alpha_i)$, we have

$$K = \operatorname{div}(dx) = \begin{cases} \sum_{i=1}^{d} (\alpha_i, 0) - 3\infty & d \text{ odd} \\ \sum_{i=1}^{d} (\alpha_i, 0) - 2(\infty_+ + \infty_-) & d \text{ even} \end{cases}$$

Consider the elliptic case: if $y^2 = f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$, then

$$\operatorname{div}(dx) = (\alpha_1, 0) + (\alpha_2, 0) + (\alpha_3, 0) - 3\infty$$
.

Notice that $\operatorname{div}(y) = \operatorname{div}(dx)$, so

$$\operatorname{div}(\frac{dx}{y})=0\,.$$

The differential dx/y is a *nonconstant* differential with no poles (or zeroes!).

We call differentials with no poles regular differentials.

The regular differentials on $\mathcal X$ form a (finite-dimensional) \Bbbk -vector space

 $\Omega^1(\mathcal{X}) = \{\omega \in \Omega(\mathcal{X}) : \omega \text{ is regular}\}.$

The **genus** of \mathcal{X} is defined to be the dimension of $\Omega^1(\mathcal{X})$.

Think: the genus gives a first classification of the intrinsic algebraic complexity of a curve.

For hyperelliptic curves

$$\mathcal{X}: y^2 = f(x) = x^d + \cdots,$$

we have

$$\Omega^{1}(\mathcal{X}) = \left\langle \frac{dx}{y}, \frac{xdx}{y}, \dots, \frac{x^{\lfloor (d-1)/2 - 1 \rfloor} dx}{y} \right\rangle,$$

SO

$$g(\mathcal{X}) = \left\lfloor \frac{d-1}{2} \right\rfloor$$
.

More generally, if \mathcal{X}/\Bbbk is a nonsingular plane curve of genus g defined by

$$\mathcal{X}:F(x,y)=0,$$

then its regular differentials are

$$\Omega^{1}(\mathcal{X}) = \left\langle \frac{x^{i}}{(\partial F/\partial y)(x,y)} dx \right\rangle_{i=0}^{g-1}.$$

Fact: for any curve \mathcal{X} , we have $deg(\mathcal{K}) = 2g - 2$.

Riemann-Roch

Let's get back to functions on \mathcal{X} .

Evaluating a single function at points maps us from \mathcal{X} to \mathbb{P}^1 (the poles of the function map to ∞).

Evaluating a tuple (f_1, \ldots, f_n) of functions gives us a map

 $P\mapsto (f_1(P):\cdots:f_n(P):1)\in\mathbb{P}^n$.

We want to control behaviour at infinity, hence the poles of the f_i .

A divisor $D = \sum_{P} n_{P}P$ is **effective** if all of the $n_{P} \ge 0$. We define

 $L(D) := \{f \in \Bbbk(\mathcal{X}) : D + \operatorname{div}(f) \text{ is effective } \} \cup \{0\}.$

...So L(D) consists of the functions whose poles are contained in D.

 $L(D_1 + D_2) \supseteq L(D_1)L(D_2)$ for any effective D_1, D_2 .

Note: if $\mathcal{X} = \mathbb{P}^1$, then $L(d\infty) = \{\text{polynomials of degree } \leq d\}$.

Fact: L(D) is a finite-dimensional k-vector space. What is its dimension?

- If deg D < 0, then $D + \operatorname{div}(f)$ can never be effective $\implies \dim L(D) = 0$ when deg D < 0.
- L(0) = k (functions with no poles are constant), $\implies \dim L(0) = 1.$
- More generally, L(D) = ?

The Riemann-Roch theorem tells us that for any D,

$$\dim L(D) - \dim L(K - D) = \deg D - g + 1.$$

Recall that K is (any) canonical divisor, and

$$L(K-D) \longleftrightarrow \left\{ \omega \in \Omega^1(\mathcal{X}) : \omega = 0 \text{ on } D \right\}$$
.

In particular, for "large enough" D, we have L(K - D) = 0 and hence dim $L(D) = \deg D - g + 1$.

Weierstrass models of elliptic curves

Suppose \mathcal{E} is an **abstract elliptic curve** over \Bbbk , and let $\mathcal{O} \in \mathcal{E}(\Bbbk)$.

We have K = 0, so Riemann-Roch gives dim $L(D) = \deg D$ for effective D.

- · $L(\mathcal{O}) = \Bbbk = \langle 1 \rangle$ (constants)
- dim $L(2\mathcal{O}) = 2 \implies L(2\mathcal{O}) = \langle 1, x \rangle$ for some x
- dim $L(3\mathcal{O}) = 3 \implies L(3\mathcal{O}) = \langle 1, x, y \rangle$ for some y
- $L(4\mathcal{O}) = \langle 1, x, x^2, y \rangle$
- $L(5\mathcal{O}) = \langle 1, x, x^2, y, xy \rangle$
- $L(6\mathcal{O}) = \langle 1, x, x^2, x^3, y, xy, y^2 \rangle$, but dim $L(6\mathcal{O}) = 6$, so there must be a nontrivial linear relation between the 7 functions $1, x, x^2, x^3, y, xy, y^2$.
- \implies Weierstrass equation $y^2 + a_1xy + a_3y = a_0x^3 + a_2x^2 + a_4x + a_6$.

 $L(3\mathcal{O})$ gives us an embedding $\mathcal{E} \to \mathbb{P}^2 = \mathbb{P}(L(3\mathcal{O}))$ defined by $P \mapsto (x(P) : y(P) : 1)$ and $\mathcal{O} \mapsto \infty = (0 : 1 : 0)$. Suppose \mathcal{X} is a curve of **genus 2**.

- We have deg K = 2g 2 = 2, so L(-nK) = 0 for n > 1.
- Apply R-R to $D = 0 \implies \dim L(K) = 2$, so $L(K) = \langle 1, x \rangle$ for some x.
- Apply R-R to D = nK, n > 1: dim L(nK) = 2n 1 for n > 1.
- $L(2K) \supseteq \langle 1, x, x^2 \rangle$ but dim L(2K) = 3, so $L(2K) = \langle 1, x, x^2 \rangle$.
- $L(3K) \supseteq \langle 1, x, x^2, x^3 \rangle$ but dim L(3K) = 5, so $L(3K) = \langle 1, x, x^2, x^3, y \rangle$ for some new y
- ...L(4K) = $\langle 1, x, x^2, x^3, x^4, y, xy \rangle$
- ... $L(5K) = \langle 1, x, x^2, x^3, x^4, x^5, y, xy, x^2y \rangle$

Now $L(6K) \supseteq \langle 1, x, x^2, x^3, x^4, x^5, x^6, y, xy, x^2y, x^3y, y^2 \rangle$, but R-R says dim L(6K) = 11, so there is a nontrivial k-linear relation between the 12 functions:

$$y^2 + \sum_{i=0}^{3} (a_i x^i y) = \sum_{i=0}^{6} b_i x^i$$
 with the $a_i, b_i \in \mathbb{k}$.

char(\mathbb{k}) \neq 2: replace y with $y - \frac{1}{2} \sum_{i=0}^{3} a_i x^i$ to get $y^2 = \sum_{i=0}^{6} f_i x^i$.

Now $P \mapsto (x(P), y(P))$ defines a map from \mathcal{X} into the plane; its image is the hyperelliptic curve

$$\mathcal{X}: y^2 = f(x) = \sum_{i=0}^6 f_i x^i.$$

Hyperelliptic Jacobians

Suppose $\mathcal{X} : y^2 = f(x)$ is hyperelliptic of genus g > 1.

From now on, we suppose f has odd degree, so \mathcal{X} has a single point ∞ at infinity.

Even degree case is (only) slightly more complicated.

Goal: to define a compact (and algebraic) representation for $Pic^{0}(\mathcal{X})$.

If [D] is in $\operatorname{Pic}^{0}(\mathcal{X})$, then [D] has a unique reduced representative:

$$[D] = [P_1 + \cdots + P_r - r\infty]$$

for some $P_1, \ldots, P_r \in \mathcal{X}$ depending on [D] (not D) such that

- $P_i \neq \infty$ and $P_i \neq \iota(P_j)$ for $i \neq j$ (semi-reducedness)
- $r \leq g$ (reducedness)

$$[D] \in \operatorname{Pic}^{0}(\mathcal{X})(\Bbbk) \iff P_{1} + \cdots + P_{r} \in \operatorname{Div}(\mathcal{X})(\Bbbk)$$

Note: the individual P_i need not be in $\mathcal{X}(\Bbbk)$!

Riemann-Roch guarantees the existence of the reduced representative.

If [D] is in $\operatorname{Pic}^{0}(\mathcal{X})$, then applying Riemann–Roch to $D + g\infty$ yields a function f such that $D + g\infty + \operatorname{div}(f) = D'$ is effective; so $[D' - g\infty] = [D]$ with deg D' = g.

 $D' - g\infty$ is almost a reduced representative: it remains to remove any $P + \iota(P) - 2\infty = \operatorname{div}(x - x(P))$ from D'. Suppose we have a class [D] in $\operatorname{Pic}^{0}(\mathcal{X})(\Bbbk)$ with reduced representative

 $D = P_1 + \cdots + P_r - r\infty \in \operatorname{Div}^0(\mathcal{X})(\Bbbk)$.

The **Mumford representation** of [D] is the (unique) pair of polynomials (a(x), b(x)) in $\mathbb{k}[x]$ such that

- $a(x) = \prod_{i=1}^{r} (x x(P_i))$, and
- $b(x(P_i)) = y(P_i)$ for $1 \le i \le r$;

for each of the *x*-coordinates appearing as a root of *a*, evaluating *b* gives the corresponding *y*-coordinate.

If necessary, compute b by Lagrange interpolation.

If $\langle a(x), b(x) \rangle$ represents a class on $\mathcal{X} : y^2 = f(x)$, then

- 1. *a* is monic of degree $r \leq g$, and
- 2. *b* satisfies deg b < r and $b^2 \equiv f \pmod{a}$.

Theorem: Any pair $\langle a(x), b(x) \rangle$ in $\mathbb{k}[x]^2$ satisfying these conditions represents a divisor class in $\operatorname{Pic}^0(\mathcal{X})(\mathbb{k})$.

 \implies identify divisor classes with Mumford reps of their reduced representatives: we simply write $[D] = \langle a, b \rangle$.

We associate $\langle a(x), b(x) \rangle$ with the ideal (a(x), y - b(x)).

We can collect the Mumford representations by degree $0 \le d \le g$:

$$M_d := \{ \langle a, b \rangle : \deg(b) < \deg(a) = d, b^2 \equiv f \pmod{a} \}$$

We can view the coefficients of $a(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ and $b(x) = b_{d-1}x^{d-1} + \cdots + b_0$ as coordinates on \mathbb{A}^{2d} .

 $b^2 \pmod{a}$ and $f \pmod{a}$ are polynomials of degree d - 1 in $\Bbbk[a_i, b_i][x]$; the vanishing of their coefficients defines d independent equations in the 2d coordinates, cutting out M_d as a d-dimensional subvariety in \mathbb{A}^{2d} .

- M_0 is a point;
- M_1 is an affine copy of \mathcal{X} ;
- $\#M_d(\mathbb{F}_q) = O(q^d)$ for $0 \le d \le g$.

Glueing together M_0, \ldots, M_g , we give $\operatorname{Pic}^0(\mathcal{X})$ the structure of a *g*-dimensional algebraic variety $\mathcal{J}_{\mathcal{X}}$, called the **Jacobian**.

Over \mathbb{F}_q , we have $\# \mathcal{J}_{\mathcal{X}} = O(q^g)$ (more precision later).

We want an expression of the group law on $\mathcal{J}_{\mathcal{X}}$ in terms of its coordinates; Cantor's algorithm does this using an explicit form of Riemann–Roch.

Cantor's algorithm: addition on $\mathcal{J}_{\mathcal{X}}$

Input: Reduced divisors $D_1 = \langle a_1, b_1 \rangle$ and $D_2 = \langle a_2, b_2 \rangle$ on \mathcal{X} . Output: A reduced $D_3 = \langle a_3, b_3 \rangle$ s.t. $[D_3] = [D_1 + D_2]$ in $\operatorname{Pic}^0(\mathcal{X})$.

1.
$$(d, u_1, u_2, u_3) := XGCD(a_1, a_2, b_1 + b_2)$$

 $// so d = gcd(a_1, a_2, b_1 + b_2) = u_1a_1 + u_2a_2 + u_3(b_1 + b_2)$
2. Set $a_3 := a_1a_2/d^2$;
3. Set $b_3 := b_1 + (u_1a_1(b_2 - b_1) + u_3(f - b_1^2))/d \pmod{a_3}$;
4. If deg $a_3 \le g$ then go to Step 9;
5. Set $\bar{a}_3 := a_3$ and $\bar{b}_3 := b_3$;
6. Set $a_3 := (f - b_3^2)/a_3$;
7. Let $(Q, b_3) := Quotrem(-b_3, a_3)$;
8. While deg $a_3 > g$
8a Set $t := \bar{a}_3 + Q(b_3 - \bar{b}_3)$;
8b Set $\bar{b}_3 := b_3$; $\bar{a}_3 = a_3$, and $a_3 := t$;
8c Let $(Q, b_3) := Quotrem(-b_3, a_3)$;
9. Return (a_3, b_3) .

- Step 1: $d(x(P_i)) = 0$ iff $P_i = \iota(Q_j)$ for some j
- Steps 2, 3: sum D_1 and D_2 , remove contribution of d
 - \rightarrow pre-reduced D_3 such that
 - $[D_3] = [D_1 + D_2]$
- Loop: reduces degree of the representative until reduced.
- Exercise: how many steps until the result is reduced?

The Mumford representation lets us compute with a hyperelliptic Jacobian by dividing it up into affine pieces:

 $\mathcal{J}_{\mathcal{X}} = M_0 \cup M_1 \cup \cdots \cup M_g \; .$

In fact, $\mathcal{J}_{\mathcal{X}}$ is projective (it's an *abelian variety*) —so what are its projective embeddings?