
Isogeny School 2020: Constant-time implementations of
isogeny schemes

Michael Meyer

RheinMain University of Applied Sciences, Wiesbaden, Germany
michael@random-oracles.org

19th September 2021

These notes discuss constant-time implementations of isogeny-based schemes. Specifically,
several papers have investigated how to implement CSIDH efficiently in constant time [8, 10, 4,
5, 1]. In contrast, for SIDH this is rather straightforward, since the isogeny computations have a
constant running time by design. We will thus focus on CSIDH.

The style of these notes is rather informal, but references to more formal and precise literature
are included. The discussion will focus on algorithmic aspects of CSIDH, and thus stay on a
high level. Low-level details such as constant-time C implementations of field arithmetic or other
techniques we will use are beyond the scope of these notes (see, e.g., [11]).

1 Constant-time implementations

As a warm-up, we postpone our entry to isogeny-land, and discuss general properties of constant-
time implementations, and a simple example.

First, we need to define what we mean by “constant time”. We’ll discuss this along the ex-
ample of exponentiation in a discrete logarithm group G (writing the group multiplicatively). In
particular, we usually have a public input g ∈ G of large prime order p, and a private key a such
that 1 ≤ a < p. Our goal is to compute ga without leaking information on a.

A reasonable definition could say that a constant-time implementation of this exponentiation
should have a constant running time, independent of the secret a. Although this definition might
hold in some situations, this is not what cryptographers usually mean by “constant time”.

Definition. An implementation is said to be constant-time if its running time is independent of
the secret input.

See [1, §2.4] for a more detailed definition and explanation.
Note that this definition implies that any function inside the implementation must perform

its operations independent of the input, if the input is in some way derived from the secret. In
particular, the implementation is not allowed to contain conditional branches that depend on the
secret, such as if-statements whose conditions are derived from the secret input. Furthermore,

1

we have to avoid reading from or writing to memory locations that depend on the secret, since
this would potentially allow for cache-timing attacks. An example for this are array indices that
depend on the secret, such as in lookup tables.

Now let’s see the theory in action, through the example of exponentiation. A simple and effi-
cient way to compute ga for any 1 ≤ a < p is the square-and-multiply method.1 Throughout this
example we assume that squarings and multiplications in the group G are constant-time, i.e., run
independent of the input values. The perhaps simplest implementation of square-and-multiply
could use the following algorithm. In the following, we write a0, . . . , ak−1 to denote the bit repres-
entation of a k-bit number a, i.e., we have a = ∑k−1

i=0 (ai · 2i) with ai ∈ {0, 1} and ak−1 = 1.

Algorithm 1: Square-and-multiply.
Input : g, a
Output: ga

1 x ← 1
2 foreach i ∈ {k− 1, k− 2, . . . , 0} do
3 x ← x · x
4 if ai = 1 then
5 x ← x · g

6 return x

This algorithm is very simple and efficient, but quite obviously, it has flaws in terms of constant-
time requirements when the exponent a is secret:

• The secret a is chosen such that 1 ≤ a < p, so in general the bitlength may vary between
different choices of a. This means that the number of steps in Algorithm 1 may vary too.

• Even if we have distinct secret exponents a and a′ of the same bitlength, the number of
multiplications required in Line 5 depends on the number of set bits of a resp. a′. Thus, the
running time depends on the number of set bits of the exponent.

There are various options to turn Algorithm 1 into a constant-time algorithm. A simple ap-
proach is the following.

• Let k = dlog2 pe be the bitlength of p. Then we represent every valid exponent a as a k-bit
number by padding with leading 0s if necessary. This means that if some a has k′ < k bits, we
set ak−1 = ak−2 = · · · = ak′ = 0. This obviously does not change the result of Algorithm 1,
but fixes the number of steps to be k, independent of the secret a.

• Algorithm 1 uses k squarings and as many multiplications as a has set bits. A simple way to
make the number of multiplications independent of a is to compute a multiplication in every
step, but throw away the result if the corresponding ai = 0. These additional multiplications
are dummy operations, which let us fix the total number of operations to k squarings plus k
multiplications, independent of a.

1In groups that are written additively, such as points on elliptic curves, the analogous method is double-and-add.

2

The resulting algorithm could then looks as in Algorithm 2, where we assume that k is fixed as
explained above, and a may have leading zero bits if required.

Algorithm 2: Square-and-multiply with a fixed number of operations.
Input : g, a
Output: ga

1 x ← 1
2 foreach i ∈ {k− 1, k− 2, . . . , 0} do
3 x ← x · x
4 if ai = 1 then
5 x ← x · g
6 if ai = 0 then
7 x′ ← x · g

8 return x

If the multiplication and squaring operations themselves are constant-time, then Algorithm 2
appears to be constant-time too: There’s a fixed number of constant-time operations. However, we
face one more problem here. Independent of the bits ai, we compute x · g at each step. The crucial
point is that we either write the result to x if ai = 1 or to x′ if ai = 0. This means that we write to a
memory location that depends on the secret, and therefore Algorithm 2 is not constant-time.

In order to fix this sort of problem, implementers usually use constant-time low-level functions.
In our case, we can use a constant-time conditional swap function cswap(x, x′, b), which leaves x
and x′ unchanged if the decision bit b = 0, and swaps the values of x and x′ if b = 1. For details
on how to implement such function in constant-time, see [11]. Instead of using an if-branch and
writing results to the according variable, we can now do the following.

Algorithm 3: Constant-time square-and-multiply.
Input : g, a
Output: ga

1 x ← 1
2 foreach i ∈ {k− 1, k− 2, . . . , 0} do
3 x ← x · x
4 x′ ← x · g
5 x, x′ ← cswap(x, x′, ai)

6 return x

Other side-channel attacks. Constant-time implementations only prevent certain kinds of side
channel attacks, where the attacker only observes the execution of an algorithm, and tries to gain
information e.g. from timings. However, this does not prevent other side-channel attacks such

3

as power analysis, or active side-channel attacks such as fault injection attacks. These kinds of
attacks are beyond the scope of these notes. We refer to [7] for more information.

2 CSIDH computations

In this section we briefly recall how a CSIDH [3] group action evaluation is computed. For more
details, see Tanja Lange’s notes from week 3 of the summer school [6].

We have a prime of the form p = 4 · `1 · · · · · `n − 1, where the `i are small distinct odd primes
and `1 < `2 < · · · < `n. We work with supersingular elliptic curves over Fp in Montgomery form
EA : y2 = x3 + Ax2 + x, represented by their A-coefficients. The supersingularity of the involved
curves implies that their group order is p + 1 = 4 · `1 · · · · · `n. Thus, Fp-rational points (with
coordinates x, y ∈ Fp) of orders `1, . . . , `n exist on these curves.

For any starting curve EA, such a point K of order `i generates a subgroup of order `i, which in
turn gives us a unique (up to isomorphisms) isogeny ϕi : EA → EA′ = EA/〈K〉 with kernel 〈K〉.
For this computation, we usually write li ∗ EA. For finding a point K of suitable order `i, we can
sample a random point P ∈ EA, whose order then divides the group order p + 1, and compute
K = [(p + 1)/`i]P. If K 6= ∞, we have found a suitable point, otherwise, we repeat this procedure.

On the other hand, we can also compute an “inverse” of such an isogeny, in the sense that
l−1
i ∗ (li ∗ EA) = li ∗ (l−1

i ∗ EA) = EA. An isogeny corresponding to l−1
i can be computed by using

a kernel 〈K〉 of order `i, where K = (x, y) with x ∈ Fp and y ∈ Fp2\Fp. Finding a suitable point
works analogously to the previous case, with the modification of sampling an initial point with
coordinates x ∈ Fp and y ∈ Fp2\Fp. In practice, we can sample a random x-coordinate, and check
whether the corresponding y-coordinates are defined over Fp or Fp2\Fp.

CSIDH key space. In the CSIDH setting, we can efficiently compute isogenies corresponding
to l1, . . . ln (and their inverses). We can also apply each li multiple times, so we can efficiently
compute the action of ∏n

i=1 l
ei
i for exponents ei of small absolute value.

In total, there are about
√

p curves that we can reach from a starting curve EA via isogenies.
Thus, in CSIDH we sample the exponents from certain ranges, i.e., we sample ei ∈ [−mi, mi], such
that we can obtain about

√
p different exponent vectors. Under the heuristic that there are not

many collisions among these vectors, i.e., different vectors that produce the same output curve,
this means that we can reach almost all valid curves with this key space. For instance, the CSIDH-
512 parameter set has

√
p ≈ 2256, n = 74, and mi = 5 for all i. This means that the key space has

size 1174 ≈ √p.
It is important to note that the action of the different li is commutative. In particular, if we

compute a series of isogenies, say [liljlk] ∗ EA, we can compute the respective isogenies in any
order, and always obtain the same resulting curve EA′ . The commutativity also allows us to define
a Diffie–Hellman-style key exchange in a straightforward way.

Efficient computation. The process described above for computing isogenies is rather inefficient
in our setting. Instead of sampling at least one point per isogeny, we can combine isogeny com-
putations from only one sampled point. As an example, suppose we want to compute an `i- and
`j-isogeny, and that ei > 0 and ej > 0. Then we can sample a point P0 on the starting curve with
suitable y-coordinate (y ∈ Fp in this case), and first compute P ← [(p + 1)/(`i`j)]P0. Then the

4

Algorithm 4: Evaluating the class group action.

Input : A ∈ Fp and a list of integers (e1, . . . , en).
Output: A′ such that [le1

1 · · · · · l
en
n] ∗ EA = EA′ .

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 + Ax2 + x is a square in Fp, else s← −1.
4 Let S = {i | sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x : 1), k← ∏i∈S `i, P← [(p + 1)/k]P.
8 foreach i ∈ S do
9 K ← [k/`i]P

10 if K 6= ∞ then
11 Compute a degree-`i isogeny ϕ : EA → EA′ with ker(ϕ) = 〈K〉:
12 A← A′, P← ϕ(P), k← k/`i, ei ← ei − s.

order of P divides `i`j. We compute K ← [`j]P, and if K 6= ∞, it has order `i and can be used to
compute an `i-isogeny ϕi. We then push P through this isogeny by computing P ← ϕi(P), which
means that the order of P loses the factor `i.2 Then we set K ← P and either have K = ∞, or K has
order `j, in which case we compute an `j-isogeny ϕj.

Similarly, we can combine the computation of an arbitrary set of isogenies of different degrees,
as long as the corresponding ei share the same sign.

An efficient algorithm to compute the CSIDH action is shown in Algorithm 4.

3 Constant-time CSIDH

The goal of this section is to apply the ideas of Section 1 to CSIDH as in Algorithm 4. Again we
assume that lower-level functions such as field multiplications are constant-time. This means that
we can also assume that if given a kernel generator K, the computation of the isogeny with kernel
〈K〉 does not leak any information except for its degree.

Similar to the simple square-and-multiply approach from Algorithm 1, Algorithm 4 is obvi-
ously not constant-time.

Number of isogenies. Analogous to the variable number of multiplications in Algorithm 1,
Algorithm 4 computes a variable number of isogenies. In particular, for the private key vector
(e1, e2, . . . , en), we compute |e1| isogenies of degree `1, |e2| isogenies of degree `2, etc. In the case
of square-and-multiply, we solved this by adding dummy multiplications, such that each step
contains a multiplication, independent of the secret (see Algorithm 2).

2Note that the order of a point P = (x, y) with x, y ∈ Fp stays unchanged when being pushed through an isogeny
corresponding to an l−1

i . The same is true for a point P = (x, y) with x ∈ Fp and y ∈ Fp2\Fp and an isogeny corresponding
to an li .

5

In Algorithm 4, we can apply the same idea: In addition to the actually required isogenies, de-
termined by the private key, we compute dummy isogenies, whose results are discarded.3 However,
for each degree `i, the cost for computing an `i-isogeny depends on the size of `i. Thus, it is not
only the total number of isogenies that we have to fix, but the number of isogenies per degree `i.
We can do this by computing mi isogenies per degree `i, where |ei| of them are actual isogenies,
and mi − |ei| are dummy isogenies.

Note that again we have to make sure not to use secret-dependent if-branches or memory
accesses, e.g. via the usage of functions such as cswap.

Point rejections and multiplications. In order to compute an `i-isogeny, we have to sample a
point and hope for its order to contain the factor `i. Otherwise, the check in Line 10 of Algorithm 4
fails. This means that the running time of this algorithm cannot be constant. In particular, the
probability for this check to succeed is 1− 1/`i for all `i, and therefore the number of necessary
attempts relies on our luck with sampling points. Nevertheless, we can use this sampling method
in a constant-time implementation, since we don’t require the running time to be constant, but
independent of secrets. What we want to keep secret, is how many of the mi isogenies of degree
`i are real isogenies, and how many are dummy isogenies. Thus, we have to enforce the condition
of Line 10 even in the case of dummy isogenies, such that the number of necessary attempts for
`i-isogenies only depends on mi and randomness, but not on the secret ei.

Furthermore, the multiplicative effort for computing a point K for the check in Line 10 depends
on the respective `i. However, we don’t have to keep secret which degree the current isogeny has,
but only if it is an actually required isogeny or a dummy isogeny. Thus, we don’t have to use
constant-time algorithms for the involved scalar multiplications.

Sign distribution. Besides the number of isogenies, the sign distribution of the private key ele-
ments ei must be kept secret. However, Algorithm 4 has a different behavior for different sign dis-
tributions. Consider the keys e = (e1, . . . , en) with ei > 0 for all i, and e′ = (e1,−e2, . . . , en−1,−en).
When running the group action with the key e, in the first round the outer multiplication (Line 7)
is a multiplication by 4, while the first inner multiplication (Line 9) starts with factor (p+ 1)/(4`i),
and decreases over the following loops. For e′, the situation is different. The outer multiplication
has a factor of roughly

√
p in the first round, while the inner multiplications start with factors of

size roughly
√

p, too.
In order to satisfy the constant-time requirements, we have to avoid this secret-dependent be-

havior. One possibility would be to use constant-time scalar multiplications, which would lead to
a massive loss of performance. A more efficient and much simpler way to achieve this is a small
adaption of the key sampling. Instead of sampling the key elements ei from [−mi, mi], we sample
them from [0, 2mi]. This means that we still have the same key space size, but now all key elements
are non-negative, and therefore there is nothing that could leak about this sign distribution. On the
downside, we now have to compute twice as many isogenies as before, and thus our constant-time
algorithm needs roughly twice as much time.

Algorithm 5 summarizes the mentioned ideas in a constant-time algorithm for CSIDH.

3Note that we need an extra scalar multiplication P ← [`i]P in the dummy case, since P doesn’t lose this factor of its
order by being pushed through an isogeny. In order to reach the constant-time requirements, these multiplications must
also be computed after actual isogeny computations. See [8] for a way to merge this extra multiplication with dummy
isogenies.

6

Algorithm 5: Constant-time evaluation of the class group action in CSIDH.

Input : A ∈ Fp and a list of integers (e1, . . . , en) with ei ∈ [0, 2mi] for all i ≤ n.
Output: A′ ∈ Fp, the curve parameter of the resulting curve EA′ .

1 Initialize k = 4, e = (e1, . . . , en) and f = (f1, . . . , fn), where fi = 2mi − ei.
2 while some ei 6= 0 or fi 6= 0 do
3 Sample random values x ∈ Fp until we have some x where x3 + ax2 + x is a square in

Fp.
4 Set P = (x : 1), P← [k]P, S = {i | ei 6= 0 or fi 6= 0}.
5 foreach i ∈ S do
6 Let m = ∏j∈S,j>i `j.
7 Set K ← [m]P.
8 if K 6= ∞ then
9 Set b = 1 if ei > 0, and b = 0 otherwise.

10 Compute a degree-`i isogeny ϕ : EA → EA′ with ker(ϕ) = 〈K〉.
11 Compute P′ ← ϕ(P).
12 cswap(A, A′, b)
13 cswap(P, P′, b)
14 ei ← ei − b
15 fi ← fi − (1− b)
16 P← [`i]P
17 if ei = 0 and fi = 0 then
18 Set k← k · `i.

A more efficient method lets us go back to sampling key elements from [−mi, mi]. The main
idea is to always keep two points instead of only one as in Algorithm 4 and Algorithm 5. In
particular, we sample points P+ = (x, y) with x, y ∈ Fp and P− = (x′, y′) with x′ ∈ Fp, y′ ∈
Fp2\Fp. We then keep both points during the loops in the algorithm, and secretly choose the
suitable point for computing a potential kernel generator for each isogeny. The details are left as
an exercise.

Exercise 1. Write an algorithm for constant-time CSIDH using the 2-point method from above.
Is your algorithm more efficient than Algorithm 5?

Exercise 2. Write an algorithm for constant-time CSIDH that does not use dummy isogenies. Is
your algorithm more efficient than Algorithm 5?

Hint:Section2statesapropertythatcouldbeveryhelpfulhere.

Exercise 3. Although being constant-time, the running time of Algorithm 5 depends on random-
ness. How do we have to vary the parameters of CSIDH-512 (n = 74, mi = 5 for all i) in order to
allow for a randomness-free constant-time implementation with equally large key space of roughly
2256?

7

4 CTIDH

[1] recently proposed a more efficient way for constant-time CSIDH. The main idea of CTIDH is
to use a different key space, and an adapted algorithm to evaluate the respective group action in
constant-time.

CTIDH key space. Recall that CSIDH usually samples key elements ei ∈ [−mi, mi] for certain
bounds mi. Instead of this sampling method, [9] showed that it is more efficient to fix a suitable
upper bound B and sample ei such that ∑ |ei| ≤ B. However, a constant-time implementation of
this idea then would have to hide which degree each computed isogeny has, which amounts to a
massive overhead.

CTIDH uses the idea of bounds for 1-norms too, but in a different setting. We organize the
prime degrees `1, . . . , `n in batches, for instance (`1, `2, `3), (`4, . . . , `10), . . . (`n−2, `n−1), (`n). For
each of these batches, we fix an upper bound Bi for the 1-norm of the respective key elements. In
our example this would mean that we e.g. require |e1|+ |e2|+ |e3| ≤ B1 when sampling a key.

Now the question is what we gain from this setting. As a toy example, assume that we have 6
prime degrees `1, . . . , `6 available. In the usual CSIDH setting, we could sample ei ∈ [0, 1], which
means that we have to compute 6 isogenies in a constant-time implementation, and obtain a key
space of size 26 = 64. In CTIDH, when instantiating two batches of size 3, sampling ei ∈ [0, 3]
with the conditions e1 + e2 + e3 ≤ 3 and e4 + e5 + e6 ≤ 3, we get 202 = 400 possible keys, while
again having to compute 6 isogenies in a constant-time implementation. Thus, this setting allows
us to achieve the same key space sizes with fewer isogenies to compute. In practice, the previously
fastest constant-time implementation of CSIDH-512 requires a total of 438 isogenies, while the best
known CTIDH parameters only need 208 isogenies for the same security level. In exchange, it is
more difficult to get the computations done in constant-time.

Exercise 4. Assume that we have a batch of k prime degrees (`1, . . . , `k), and that we can sample
the respective key elements ei ∈ [−B, B] for a given bound B>0, under the condition that ∑k

i=1 |ei| ≤
B. How many different key batch vectors (e1, . . . , ek) does this sampling method admit.

The CTIDH algorithm. As in the CSIDH constant-time algorithms, CTIDH has to keep the num-
ber of dummy vs. non-dummy isogenies secret, as well as the sign distribution of the key elements.
However, for a batch (`1, . . . , `k), we only impose the condition ∑ |ei| ≤ B for a bound B, which
means that the number of `i-isogenies for each i varies with the key. Using the usual isogeny for-
mulas, the running time of an `i-isogeny computation depends on `i. This means that a straight-
forward implementation of isogenies would result in a variable running time, depending of how
the key elements are distributed among the batch. In particular, we have to make sure that key
batches such as (B, 0, . . . , 0) and (0, . . . , 0, B) do not lead to varying running times of the algorithm.

There are three problems that we have to solve:

• Computing an `i-isogeny with Vélu-style formulas essentially amounts to evaluating poly-
nomials of the form

h`i
(x) =

(`i−1)/2

∏
j=1

(x− x([j]P))

8

for an input point P of order `i, where x(P) denotes the x-coordinate of P. In CTIDH, we have
to make sure that all Bi isogenies for the i-th batch have the same running time, independent
of the isogeny degrees. We achieve this by using the Matryoshka structure of the isogeny
formulas. Given prime degrees `i, `j with `i < `j, computing h`j

(x) in an `j-isogeny contains
all the necessary operations for computing h`i

(x), plus a few extra steps. Thus, if we compute
an `i-isogeny, we can add these few extra steps as dummy operations, and the running time
is the same as for an `j-isogeny. Thus, in CTIDH we can compute each isogeny of a batch at
the cost of the maximal degree of this batch.

• After sampling a point P, the scalar multiplications for computing a potential kernel gener-
ator point K of order `i depends on the size of `i. However, in CTIDH we have to make sure
that this takes the same time for any prime degree in a batch. We leave this as an exercise.

• The point rejection probability for a point of order `i is 1/`i, so again depends on the secret
choice of an `i from a batch (`1, . . . , `k). In particular, for the smallest prime factor of a batch,
in this case `1, this probability is the highest. Therefore, we have to make sure that the
rejection probability is the same for all degrees within a batch. We do this by performing an
additional coin toss with success probability (`i · (`1 − 1))/(`1 · (`i − 1)) for the respective
`i. Then we only continue with computing an `i-isogeny if the respective point K 6= ∞ and
the coin toss succeeds. This ensures that for all degrees in the batch, the rejection probability
is 1/`1, independent of `i.

Another important topic is the choice of parameters. This is more complicated, since in ad-
dition to the CSIDH parameters, we have to define the CTIDH batches. It is not known how to
optimally instantiate CTIDH, but several ideas for finding good parameters are explained in [1]. In
total, implementing all these techniques in constant-time with the best known CTIDH parameters
results in a speedup of almost 50% over the previously fastest constant-time implementations of
CSIDH for different security levels. See [1] for more details.

Exercise 5. Show that the Vélusqrt isogeny formulas [2] have a similar Matryoshka structure,
and can therefore be used in CTIDH.

Exercise 6. Given the CTIDH batch (`1, . . . , `k) and a point P of full order p + 1, write an al-
gorithm that computes a point of order `i from P, without leaking which `i ∈ {`1, . . . , `k} was
used.

References

[1] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael
Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster constant-time CSIDH. Crypto-
logy ePrint Archive, Report 2021/633, 2021. https://ia.cr/2021/633.

[2] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation
of isogenies of large prime degree. ANTS-XIV, 2020. https://eprint.iacr.org/2020/341.

9

https://ia.cr/2021/633
https://eprint.iacr.org/2020/341

[3] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An
efficient post-quantum commutative group action. In T. Peyrin and S. D. Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, pages 395–427. Springer, 2018.

[4] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De Feo,
Francisco Rodríguez-Henríquez, and Benjamin Smith. Stronger and Faster Side-Channel Pro-
tections for CSIDH. In P. Schwabe and N. Thériault, editors, Progress in Cryptology – LATIN-
CRYPT 2019, pages 173–193. Springer, 2019.

[5] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. Optimal strategies for
CSIDH. Cryptology ePrint Archive, Report 2020/417, 2020. https://eprint.iacr.org/
2020/417.

[6] Tanja Lange. (C)SIDH – Isogeny school week 3. Summer school on real-world crypto
and privacy, Šibenik, Croatia, 2021. https://www.hyperelliptic.org/tanja/teaching/
isogeny-school21/.

[7] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing the
secrets of smart cards. Springer Science & Business Media, 2008.

[8] Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and Elligators: An efficient
constant-time implementation of CSIDH. In J. Ding and R. Steinwandt, editors, Post-Quantum
Cryptography – 10th International Conference, PQCrypto 2019, pages 307–325. Springer, 2019.

[9] Kohei Nakagawa, Hiroshi Onuki, Atsushi Takayasu, and Tsuyoshi Takagi. L1-Norm Ball for
CSIDH: Optimal Strategy for Choosing the Secret Key Space. Cryptology ePrint Archive,
Report 2020/181, 2020. https://ia.cr/2020/181.

[10] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (Short Paper) A
Faster Constant-Time Algorithm of CSIDH Keeping Two Points. In N. Attrapadung and
T. Yagi, editors, Advances in Information and Computer Security – 14th International Workshop on
Security, IWSEC 2019, pages 23–33. Springer, 2019.

[11] Peter Schwabe. Timing Attacks and Countermeasures. Summer school on real-world
crypto and privacy, Šibenik, Croatia, 2016. https://summerschool-croatia.cs.ru.nl/
2016/slides/PeterSchwabe.pdf.

10

https://eprint.iacr.org/2020/417
https://eprint.iacr.org/2020/417
https://www.hyperelliptic.org/tanja/teaching/isogeny-school21/
https://www.hyperelliptic.org/tanja/teaching/isogeny-school21/
https://ia.cr/2020/181
https://summerschool-croatia.cs.ru.nl/2016/slides/PeterSchwabe.pdf
https://summerschool-croatia.cs.ru.nl/2016/slides/PeterSchwabe.pdf

	Constant-time implementations
	CSIDH computations
	Constant-time CSIDH
	CTIDH
	References

