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Radical isogenies are a novel approach to computing isogenies which is effi-
cient for chains of small degree N isogenies, such as required in CSIDH [4]. As
such it is complementary to the Vélu-sqrt approach described in [1] which only

requires Õ(
√
`) operations in Fp instead of O(`) and is most efficient for larger

degree isogenies, say degree > 100.
Radical isogenies are given by explicit formulae, are deterministic and com-

pletely avoid generating N -torsion points. Given an elliptic curve E with a point
P of order N , one can use Vélu’s formulae to compute a defining equation for
E′ = E/〈P 〉. Radical isogenies then give formulae for the coordinates of a point
P ′ on E′ again of order N , such that the composition

E → E′ → E′/〈P ′〉 (1)

is a cyclic isogeny of degree N2. These formulae are algebraic expressions in the
coefficients of E and the coordinates of P , and one radical (an Nth root) of
another algebraic expression in the coefficients of E and the coordinates of P .

An important implication of this construction is that the same formulae now
apply to E′ and P ′, which allows us to compute chains of N -isogenies of arbitrary
length without needing to generate an N -torsion point in every step.

To derive these formulae you will use the following approach:

1. Is there a natural parametrized elliptic curve model that represents an elliptic
curve together with an N -torsion point (wlog we can assume the point P
to be (0, 0))? If so, we can use this model to derive explicit formulae that
depend on the parameters of the model.
Approach: To solve this, we will use the Tate normal form

E : y2 + (1− c)xy − by = x3 − bx2 P = (0, 0), b, c ∈ K .

which represents an elliptic curve E over a field K together with a K-rational
point P = (0, 0) of order N ≥ 4. The fact that P has order exactly N
imposes an algebraic relation between b, c which we denote FN (b, c) = 0.
Define QN (b, c) the function field of the curve FN (b, c), i.e.

QN (b, c) := Frac
Q[b, c]

(FN (b, c))
.

2. Given such a model, we will derive an equation for E′ = E/〈P 〉.
Approach: Use Vélu’s formulae to derive an explicit equation for the curve
E′. This step is straightforward.



3. Given the equation for E′ we can now look for an N -torsion point P ′ on E′,
such that

E → E′ → E′/〈P ′〉 (2)

is a cyclic isogeny of degree N2. This simply means that the kernel of the
composition has to be generated by a single N2-torsion point on E (and not
e.g. full N -torsion).
Approach: You will show that the point P ′ has to satisfy

ϕ̂(P ′) = λP for some λ ∈ (Z/N)∗, (3)

with ϕ̂ : E′ → E the dual of ϕ.
4. Since we know the equation of E′ explicitly, and we are looking for an N -

torsion point on E′, satisfying the above equation, how will we find it?
Approach: Find a root of the N -th division polynomial on E′, which by
definition has as its roots the x-coordinates of the N -torsion points. Note
that E′ is parametrized by (b, c), the parameters of E, and thus the N -th
division polynomial has coefficients which are also parametrized by (b, c).

5. We can factor the N -th division polynomial over QN (b, c), but this typically
results in a product of irreducible factors of degree > 1. To find a correct
root, we need to determine the correct factor of theN -th division polynomial,
and we also have to determine the smallest algebraic extension of QN (b, c)
where such a root is defined.
Approach: We show that it is sufficient to adjoin a single N -th root of an
algebraic expression in (b, c). More in detail, the central observation is that
P ′ is defined over QN (b, c, N

√
ρ ) for some ρ ∈ QN (b, c) and we prove that one

can take ρ = tN (P,−P ) where tN denotes the Tate pairing.
6. Once we know the correct field extension, we can explicilty find a root of

(a factor of) the division polynomial defined over this extension. This root
gives the x-coordinate of P ′ explicitly, and the y-coordinate follows easily by
solving a degree 2 equation coming from the curve equation.
Approach: Use a standard root finding algorithm.

7. The fact that we only require one Nth root explains the name “radical
isogenies”. By rewriting (E′, P ′) again in Tate normal form with coefficients
b′ and c′, we are ready for another iteration. The formulae we derive in fact
express b′ and c′ directly as elements of QN (b, c, N

√
ρ ), and can simply be

applied as many times as required without the need to generate N -torsion
points explicitly as one would do in the more classical approaches.
Approach: Move the point P ′ to (0, 0) again and transform the curve into
Tate normal form. This gives the new b′, c′ which can be repeated indefinitely.

An important application is where we apply these formula for an elliptic
curve over a finite field Fq, with gcd(q− 1, N) = 1. In this case, we immediately
obtain that the radical N

√
ρ is again defined over Fq, since Nth powering is a field

automorphism in this case. This can be applied in the setting of CSIDH, since
there we need to take a number of steps in one direction, i.e. a cyclic isogeny.

We will now proceed to go through each of these steps to derive explicit
radical isogenies for the case N = 5.
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1 Step 1: The Tate normal form

We will be interested in elliptic curves E over K with a distinguished point
P ∈ E(K) of some finite order N . By translating this point to (0, 0) and requiring
that the tangent line is horizontal, and with proper scaling, one can easily prove
the following lemma.

Lemma 1. Let E be an elliptic curve over K and let P ∈ E(K) be a point of
order N ≥ 4, then (E,P ) is isomorphic to a unique pair of the form

E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0) (4)

with b, c ∈ K and

∆(b, c) = b3(c4 − 8bc2 − 3c3 + 16b2 − 20bc+ 3c2 + b− c) 6= 0 .

Exercise 1 Prove the above lemma, i.e. that (b, c) are unique given that P =
(0, 0).

The resulting curve-point pair is said to be in Tate normal form.

Exercise 2 Using your favorite computer algebra package, show that on the
Tate normal form, the first few scalar multiples of P = (0, 0) are given by simple
expressions in b and c, e.g.

2P = (b, bc), 3P = (c, b− c), −P = (0, b), −2P = (b, 0), −3P = (c, c2) .

Using these multiples, for each N ≥ 4 one can write down an irreducible
polynomial FN (b, c) ∈ Z[b, c] whose vanishing, along with the non-vanishing of
∆(b, c) and of Fm(b, c) for 4 ≤ m < N , expresses that P has exact order N .

Exercise 3 Using the previous exercise, show that the first few values of FN are
given by F4(b, c) = c = 0, F5(b, c) = c− b = 0 and F6(b, c) = c2 + c− b = 0.

Alternatively, the polynomial FN (b, c) can be recovered as a factor of the con-
stant term of the N -division polynomial (see Step 4 for their definition) of the
curve (4), when considered over the rational function field Q(b, c). This is the
approach taken in [9, §2], to which we refer for more details.

Remark 2. Up to birational equivalence, FN (b, c) is a defining polynomial for
the modular curve X1(N). See again [9] for more background.

Following the previous exercises, we now know that for N = 5, we have the
following Tate normal form:

E : y2 + (1− b)xy − by = x3 − bx2, P = (0, 0) (5)

as long as b 6= 0 nor a root of b2 − 11b− 1.
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2 Step 2: Isogenies and Vélu’s formulae

Let E and E′ be elliptic curves over K. An isogeny ϕ : E → E′ is a non-constant
morphism such that ϕ(OE) = OE′ , where OE ,OE′ denote the respective points
at infinity. The degree of ϕ is its degree as a morphism and there always exists
a dual isogeny ϕ̂ : E′ → E such that ϕ̂ ◦ ϕ = [deg(ϕ)], where as usual [·]
denotes scalar multiplication. The kernel of ϕ is a finite subgroup of E, more
precisely its size is a divisor of deg(ϕ), where equality holds if and only if ϕ
is separable (which is automatic if charK - deg(ϕ)). Conversely, given a finite
subgroup C ⊂ E, there exists a unique1 separable isogeny ϕ having C as its
kernel. Concrete formulae for this isogeny were given by Vélu:

Theorem 3. Let C be a finite subgroup of the elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

over K. Fix a partition C = {OE} ∪ C2 ∪ C+ ∪ C−, where C2 are the order
2 points of C, and C+ and C− are such that for any P ∈ C+ it holds that
−P ∈ C−. Write S = C+ ∪ C2, and for Q ∈ S define

gxQ = 3x(Q)2 + 2a2x(Q) + a4 − a1y(Q),

gyQ = −2y(Q)− a1x(Q)− a3,

uQ = (gyQ)2, vQ =

{
gxQ if 2Q = OE ,
2gxQ − a1g

y
Q else,

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + x(Q)vQ),

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)v − 7w.

Then the separable isogeny ϕ with domain E and kernel C has codomain E′ =
E/C with Weierstrass equation

E′ : y2 +A1xy +A3y = x3 +A2x
2 +A4x+A6 (6)

over K. Furthermore, for P ∈ E we can compute the image of P as

x(ϕ(P )) = x(P ) +
∑

Q∈C\{OE}

(x(P +Q)− x(Q))

y(ϕ(P )) = y(P ) +
∑

Q∈C\{OE}

(y(P +Q)− y(Q)).

Proof. See [10]. �

1 Up to post-composition with an isomorphism.
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Exercise 4 Using your favorite computer algebra package, apply Vélu’s formu-
lae to E and P and compute an equation for E′. You can for instance use the
IsogenyFromKernel command in Magma for this where you first have to derive
the kernel polynomial (which is easy given the multiples of P you computed be-
fore). If everything went correct, you should end up with a curve isomorphic
to

y2+(−b+1)∗x∗y−b∗y = x3−b∗x2+(−5∗b3−10∗b2+5∗b)∗x+(−b5−10∗b4+5∗b3−15∗b2+b) .

3 Step 3: finding a kernel generator on E′

Now that we have determined E′, we need to find a point P ′ on E′ such that
the composition

E → E′ → E′/〈P ′〉 (7)

is a cyclic isogeny of degree N2. This simply means that the kernel of the com-
position has to be generated by a single N2-torsion point on E (and not e.g. full
N -torsion).

Exercise 5 Show that the point P ′ has to satisfy

ϕ̂(P ′) = λP for some λ ∈ (Z/N)∗, (8)

with ϕ̂ : E′ → E the dual of ϕ.

In particular, there are Nφ(N) such points, generating N distinct subgroups
of E′, where φ denotes Euler’s totient function. The points corresponding to
λ = 1 will be called P -distinguished; they can be viewed as a set of canonical
generators for these subgroups.

4 Step 4: Division polynomials

Let E/K be defined by y2+a1xy+a3y = x3+a2x
2+a4x+a6, and let b2 = a21+4a2,

b4 = 2a4 + a1a3, b6 = a23 + 4a6, b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24. For all

integers N ≥ 0, the N -division polynomial is given by

ΨE,0 = 0, ΨE,1 = 1, ΨE,2 = 2y+a1x+a3, ΨE,N = t ·
∏

Q∈(E[N ]\E[2])/±

(x−x(Q)),

where t = N if N is odd and t = N
2 ·ΨE,2 if N is even. By definition, we have that

for any non-trivial P ∈ E[N ], ΨE,N (P ) = 0. The division polynomials satisfy
the following recurrence relation which allows them to be computed efficiently:

ΨE,3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8

ΨE,4
ΨE,2

= 2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ (b4b8 − b26)

ΨE,2N+1 = ΨE,N+2Ψ
3
E,N − ΨE,N−1Ψ3

E,N+1 if N ≥ 2

ΨE,2N =
ΨE,N
ΨE,2

(ΨE,N+2Ψ
2
E,N−1 − ΨE,N−2Ψ2

E,N+1) if N ≥ 3.
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Note that Ψ2
E,2 = 4x3 +(a21 +4a2)x2 +(2a1a3 +4a4)x+a23 +4a6, i.e. a univariate

polynomial in x.
If one is interested in points of exact order N (so not just in E[N ]), then one

can use the reduced N -division polynomial ψE,N defined as

ψE,N =
ΨE,N

lcmd|N,d6=N{ΨE,d}
.

For all primes `, we have that ΨE,` = ψE,`. Note that for N > 2, the reduced
N -division polynomial of an elliptic curve E is a univariate polynomial in x.

The multiplication by N -map can be expressed explicitly using division poly-
nomials as follows [8, Exercise 3.6]:

[N ]P =

(
φE,N (P )

ΨE,N (P )2
,
ωE,N (P )

ΨE,N (P )3

)
, (9)

with φE,N = xΨ2
E,N−ΨE,N+1ΨE,N−1 and ωE,N = 1

2ΨE,N
(ΨE,2N−ΨE,N (a1φE,N+

a3Ψ
2
E,N )).

Exercise 6 Using a computer algebra package, compute the 5-th division poly-
nomial for the curve

E : y2 + (1− c)xy − by = x3 − bx2 .

What is the constant term of this polynomial? How does this related to F5 you
have derived before?

Exercise 7 Using a computer algebra package, compute the 5-th division poly-
nomial for the curve E′. The answer is given in the appendix.

Exercise 8 Using a computer algebra package, compute the factorisation of the
5-th division polynomial on the curve E′ as irreducible polynomials over the
funciton field Q(b). Which degrees do you see? Can you relate one of the factors
with the dual isogeny?

5 Step 5: Constructing the correct algebraic extension
via the Tate pairing

Given an elliptic curve E/K and an integer N ≥ 2, the Tate pairing is a bilinear
map

tN : E(K)[N ]× E(K)/NE(K)→ K∗/(K∗)N : (P1, P2) 7→ tN (P1, P2)

which can be computed as follows. Consider a Miller function fN,P1
, i.e., a func-

tion on E with divisor N(P1) − N(OE). Let D be a K-rational divisor on E
that is linearly equivalent with (P2)− (OE) and whose support is disjoint from
{P1,OE}. Then tN (P1, P2) = fN,P1

(D). If P1 6= P2 and the Miller function is
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normalized, i.e., the leading coefficient of its expansion around OE with respect
to the uniformizer x/y equals 1 (we are assuming that E is in Weierstrass form),
then one can simply compute tN (P1, P2) as fN,P1

(P2).

For certain instances of K, the Tate pairing is known to be non-degenerate,
meaning that for each P1 ∈ E(K)[N ] \ {OE} there exists a P2 ∈ E(K)/NE(K)
such that tN (P1, P2) 6= 1, and vice versa. Most notably, this is true if K = Fq
is a finite field containing a primitive Nth root of unity ζN [6], i.e., for which
N | q − 1.

Another important feature is that the Tate pairing is compatible with iso-
genies, in the following sense: if ϕ : E → E′ is an isogeny over K then the rule
tN (ϕ(P1), P ′2) = tN (P1, ϕ̂(P ′2)) applies. For a proof of this compatibility we refer
to [2, Thm. IX.9], which assumes ζN ∈ K, but this condition can be discarded
(it is not used in the proof).

Exercise 9 Show that the above implies that

tN (ϕ(P1), ϕ(P2)) = tN (P1, P2)deg(ϕ)

for all P1 ∈ E(K)[N ] and P2 ∈ E(K)/NE(K).

Exercise 10 Using the fact that ϕ̂(P ′) = P and exploiting the compatibility
of the Tate pairing with isogenies, show that the field of definition of P ′ must
contain N

√
tN (P,−P ). Why do you think −P was chosen and not just P?

Exercise 11 Using a computer algebra package, compute a representant of the
Tate pairing t5(P,−P ) on E. In this case the result can simply be taken as b.
Note the multiplying with any 5-th power in QN (b, c)∗ is an equally valid answer
since the Tate pairing is only determined modulo 5-th powers.

The above exercise shows that the field of definition of P ′ contains at least the
field QN (b, c, N

√
ρ), but it does not directly imply that both are equal. Adjoining

an N -th root is an instance of a simple radical extension.

Following [5], we say that a field extension K ⊂ L is simple radical of degree
N ≥ 2 if there exists an α ∈ L such that (i) L = K(α), (ii) ρ := αN ∈ K, and
(iii) xN − ρ ∈ K[x] is irreducible. Property (iii) can be verified easily using the
following theorem.

Theorem 4. Let K be a field, consider an integer N ≥ 2, and let ρ ∈ K∗.
Assume that for all primes m | N we have ρ /∈ Km. If 4 | N , assume moreover
that ρ /∈ −4K4. Then the polynomial xN − ρ ∈ K[x] is irreducible.

Proof. See [7, Thm. VI.9.1]. �

Although you have only shown an inclusion of fields, it is possible to show
an equality as in the following theorem. For a proof we refer to the original
paper [3].
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Theorem 5. Let P ′ ∈ E′ be a point satisfying (3). Then the field extension
QN (b, c) ⊂ QN (b, c)(P ′), obtained by adjoining the coordinates of P ′, is simple
radical of degree N . More precisely, QN (b, c)(P ′) = QN (b, c)(N

√
ρ ) for an appro-

priately chosen N th root N
√
ρ of ρ = fN,P (−P ).

Remark 1. Our choice of radicand ρ = fN,P (−P ) is somewhat arbitrary: any
representant of tN (P, µP ) for any µ ∈ (Z/N)∗ would have worked equally well,
with the same proofs. This reflects the fact that scaling ρ by Nth powers, or
raising ρ to an exponent that is coprime with N , results in the same simple
radical extension.

6 Step 6: finding the coordinates of P ′

Following Theorem 5 we know it is sufficient to consider the field extension
QN (b, c)(N

√
ρ ) for an appropriately chosen Nth root N

√
ρ of ρ = fN,P (−P ) to

find the field of definition of P ′.

Exercise 12 Using a computer algebra package, find the coordinates of P ′ on
E′ by first finding its x-coordinate as a root of a well chosen factor of the 5-th
division polynomial on E′ over the field extension QN (b, c)(N

√
b ).

In particular, if you choose the factor

z5 + 10bz4 + (−5b3 − 5b2 + 55b)z3 + (−85b4 − 120b3 − 230b2 + 35b)z2

+(−5b6 − 310b5 − 770b4 + 325b3 − 95b2 + 10b)z

−b8 + 19b7 − 777b6 + 757b5 − 755b4 − 2b3 − 17b2 + b

you will end up with the x-coordinate of a P -distinguished point. If we denote
ω = 5

√
b, then the result you should obtain is given by

P ′ := [5ω4 + (b− 3)ω3 + (b+ 2)ω2 + (2b− 1)ω − 2b,

5ω4 + (b− 3)ω3 + (b2 − 10b+ 1)ω2 + (−b2 + 13b)ω − b2 − 11b]

Given the coordinates of a P -distinguished point P ′, all other P -distinguished
points are found by varying the choice of N

√
ρ :

Lemma 6. Let λ ∈ (Z/N)∗ and consider formulae expressing the coordinates
of a point P ′ such that ϕ̂(P ′) = λP . Then, by varying the choice of the N th root
N
√
ρ , i.e., by scaling it with ζiN for i = 0, 1, . . . , N − 1, these formulae compute

the coordinates of all points P ′ for which ϕ̂(P ′) = λP .

7 Step 7: transforming back to Tate normal form

Now that you have found the coordinates of the point P ′, you are almost done
in deriving the radical isogeny formulae for N = 5. The final step is simply to
transform the curve equation for E′ back into a Tate normal form, the coefficients
of which are the radical isogeny formulae.
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Exercise 13 Using the result of the previous exercise, transform the curve E′

into Tate normal form

E′ : y2 + (1− b′)xy − b′y = x3 − b′x2, P ′ = (0, 0) .

One possible answer is given by

b′ = ω
ω4 + 3ω3 + 4ω2 + 2ω + 1

ω4 − 2ω3 + 4ω2 − 3ω + 1

8 Other examples

Below you can find some other examples that were computed in a similar method
as you did for N = 5. Note that the table only contains a representative of the
radicand. The corresponding formulae expressing b′, c′ as a function of b, c, ω =
N
√
ρ become too complex to nicely display here. All formulae for N = 2, . . . , 13

can be found online at https://github.com/KULeuven-COSIC/Radical-Isogenies.

N Polynomial relation FN (b, c) = 0 Radicand ρ = fN,P (−P )

4 c = 0 −b
5 c− b = 0 b

6 c2 + c− b = 0 −b2/c
7 c3 + cb− b2 = 0 b3/c2

8 c2b− c2 + 3cb− 2b2 = 0 −b3/(b− c)

9 c5 + c4 − c3b+ c3 − 3c2b+ 3cb2 − b3 = 0 b3c2/(b− c)2

10
c5 + c4b+ 3c3b− 3c2b2

+ c2b− 2cb2 + b3 = 0
−b3c/(c2 + c− b)

11
c7b+ 3c6b− c6 − 3c5b2 + 6c5b− 9c4b2

+ 4c3b3 + c3b2 − 3c2b3 + 3cb4 − b5 = 0
b3(b− c)2/(c2 + c− b)2

12
c6 + c4b+ c4 − 5c3b− c2b3

+ 10c2b2 − 9cb3 + 3b4 = 0
−b4(b− c)/(b2 − bc− c3)

13

c10 − c9b2 − 6c8b2 + 6c8b+ 5c7b3 − 21c7b2

+ 3c7b+ 24c6b3 − 13c6b2 + c6b− 9c5b4

+ 21c5b3 − 6c5b2 − 15c4b4 + 15c4b3 + 4c3b5

− 20c3b4 + 15c2b5 − 6cb6 + b7 = 0

b5(c2 + c− b)2/(b2 − bc− c3)2

Table 1: Relations FN (b, c) = 0 and radicands ρ for small N ≥ 4

A similar reasoning can be made for N > 5, but a direct factorization of
the reduced N -division polynomial of E′ over QN (b, c)(N

√
ρ ) quickly becomes
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unwieldy, for several reasons: the coefficients of E′ become more involved, the
degree of ψE′,N grows quadratically, and both ρ and the base field QN (b, c)
become increasingly complicated, see Table 1. For instance, from N = 7 onwards
it is no longer possible to eliminate one of the variables b, c using the relation
FN (b, c) = 0. As long as the modular curve X1(N) has genus 0, it is possible to
get around this by using a different parametrization, but for N = 11 and N ≥ 13
this is no longer the case.

An approach that already works much better is to use number fields, i.e.
assign a large enough integer value to b, construct the number field defined by
FN (b, c) = 0 and the degree N extension by adjoining N

√
ρ . The root of ψE′,N (x)

is an expression in c and N
√
ρ with rational coefficients. We know that each such

coefficient is a rational function in b, so if b is large enough, this function can
be found using lattice reduction. The most effective method is similar to the
previous method, but uses p-adic fields instead of number fields. Again we need
to choose a “large enough” value for b and a large enough precision with which
we represent the p-adic field, to be able to reconstruct the rational function in
b. We followed this approach for N = 13, since Magma struggles to find the
formulae using direct root finding.

9 Appendix

The 5-th division polynomial on E′

5z^12 + (5b^2 - 30b + 5)z^11 + (b^4 - 322b^3 - 551b^2 + 267b + 1)z^10 + (-480b^5 - 3390b^4 + 3030b^3 -

6335b^2 + 470b)z^9 + (-285b^7 - 3765b^6 + 8265b^5 - 20355b^4 + 35910b^3 - 8040b^2 + 285b)z^8 + (-90b^9 -

870b^8 + 27060b^7 + 20850b^6 + 62910b^5 - 72060b^4 + 20220b^3 - 3150b^2 + 90b)z^7 + (-15b^11 + 405b^10 +

42195b^9 + 128310b^8 + 266625b^7 - 228315b^6 - 293925b^5 + 172200b^4 - 28125b^3 - 225b^2 + 15b)z^6 +

(-b^13 + 289b^12 + 27558b^11 + 199127b^10 + 511270b^9 - 280879b^8 + 477816b^7 + 1713587b^6 - 1578322b^5 +

418067b^4 - 28098b^3 + 199b^2 + b)z^5 + (65b^14 + 9915b^13 + 112205b^12 + 669245b^11 - 352475b^10 +

538435b^9 + 6828385b^8 - 3948605b^7 + 4751805b^6 - 2247405b^5 + 252920b^4 - 11135b^3 + 60b^2)z^4 + (5b^16

+ 2060b^15 + 33060b^14 + 331020b^13 + 334630b^12 - 730470b^11 + 8809165b^10 - 14385960b^9 + 14356630b^8 -

6234590b^7 + 5800370b^6 - 1060370b^5 + 75310b^4 - 2310b^3 + 5b^2)z^3 + (250b^17 + 4615b^16 + 94755b^15 +

113915b^14 - 32065b^13 + 7027425b^12 - 19811600b^11 - 400635b^10 - 11570105b^9 + 10204120b^8 - 7585240b^7 +

2059970b^6 - 256090b^5 + 11175b^4 - 265b^3)z^2 + (20b^19 + 160b^18 + 13080b^17 + 55555b^16 - 478150b^15 +

4484205b^14 - 6832915b^13 - 20657360b^12 + 7663700b^11 - 31325575b^10 - 7101825b^9 + 9341380b^8 - 1331150b^7

+ 385260b^6 - 28745b^5 + 675b^4 - 20b^3)z + b^21 - 9b^20 + 520b^19 + 8515b^18 - 59980b^17 + 160118b^16 +

2573598b^15 - 13562315b^14 + 15424734b^13 - 34652931b^12 + 15685472b^11 - 13788354b^10 - 8269780b^9 +

266981b^8 - 133579b^7 + 28334b^6 - 935b^5 + 11b^4 - b^3

Its corresponding factorisation in irreducible polynomials over Q(b):

<z^2 + (b^2 - b + 1)z + 1/5b^4 + 3/5b^3 - 26/5b^2 - 8/5b + 1/5, 1>,

<z^5 - 15bz^4 + (-55b^3 + 45b^2 + 5b)z^3 + (-35b^5 - 65b^4 + 65b^3 - 100b^2)z^2 + (-10b^7 - 25b^6 -

30b^5 - 980b^4 + 495b^3 - 5b^2)z - b^9 - 7b^8 + 62b^7 - 605b^6 + 127b^5 - 1177b^4 - 14b^3 - b^2, 1>,

<z^5 + 10bz^4 + (-5b^3 - 5b^2 + 55b)z^3 + (-85b^4 - 120b^3 - 230b^2 + 35b)z^2 + (-5b^6 - 310b^5 -

770b^4 + 325b^3 - 95b^2 + 10b)z - b^8 + 19b^7 - 777b^6 + 757b^5 - 755b^4 - 2b^3 - 17b^2 + b, 1>
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