Radical Isogenies

Frederik Vercauteren, joint work with Wouter Castryck and Thomas Decru imec-COSIC, KU Leuven, Belgium

Radical isogenies are a novel approach to computing isogenies which is efficient for chains of small degree N isogenies, such as required in CSIDH [4]. As such it is complementary to the Vélu-sqrt approach described in [1] which only requires $\widetilde{O}(\sqrt{\ell})$ operations in \mathbb{F}_{p} instead of $O(\ell)$ and is most efficient for larger degree isogenies, say degree >100.

Radical isogenies are given by explicit formulae, are deterministic and completely avoid generating N-torsion points. Given an elliptic curve E with a point P of order N, one can use Vélu's formulae to compute a defining equation for $E^{\prime}=E /\langle P\rangle$. Radical isogenies then give formulae for the coordinates of a point P^{\prime} on E^{\prime} again of order N, such that the composition

$$
\begin{equation*}
E \rightarrow E^{\prime} \rightarrow E^{\prime} /\left\langle P^{\prime}\right\rangle \tag{1}
\end{equation*}
$$

is a cyclic isogeny of degree N^{2}. These formulae are algebraic expressions in the coefficients of E and the coordinates of P, and one radical (an N th root) of another algebraic expression in the coefficients of E and the coordinates of P.

An important implication of this construction is that the same formulae now apply to E^{\prime} and P^{\prime}, which allows us to compute chains of N-isogenies of arbitrary length without needing to generate an N-torsion point in every step.

To derive these formulae you will use the following approach:

1. Is there a natural parametrized elliptic curve model that represents an elliptic curve together with an N-torsion point (wlog we can assume the point P to be $(0,0))$? If so, we can use this model to derive explicit formulae that depend on the parameters of the model.
Approach: To solve this, we will use the Tate normal form

$$
E: y^{2}+(1-c) x y-b y=x^{3}-b x^{2} \quad P=(0,0), b, c \in K
$$

which represents an elliptic curve E over a field K together with a K-rational point $P=(0,0)$ of order $N \geq 4$. The fact that P has order exactly N imposes an algebraic relation between b, c which we denote $F_{N}(b, c)=0$. Define $\mathbb{Q}_{N}(b, c)$ the function field of the curve $F_{N}(b, c)$, i.e.

$$
\mathbb{Q}_{N}(b, c):=\operatorname{Frac} \frac{\mathbb{Q}[b, c]}{\left(F_{N}(b, c)\right)}
$$

2. Given such a model, we will derive an equation for $E^{\prime}=E /\langle P\rangle$.

Approach: Use Vélu's formulae to derive an explicit equation for the curve E^{\prime}. This step is straightforward.
3. Given the equation for E^{\prime} we can now look for an N-torsion point P^{\prime} on E^{\prime}, such that

$$
\begin{equation*}
E \rightarrow E^{\prime} \rightarrow E^{\prime} /\left\langle P^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

is a cyclic isogeny of degree N^{2}. This simply means that the kernel of the composition has to be generated by a single N^{2}-torsion point on E (and not e.g. full N-torsion).

Approach: You will show that the point P^{\prime} has to satisfy

$$
\begin{equation*}
\hat{\varphi}\left(P^{\prime}\right)=\lambda P \text { for some } \lambda \in(\mathbb{Z} / N)^{*} \tag{3}
\end{equation*}
$$

with $\hat{\varphi}: E^{\prime} \rightarrow E$ the dual of φ.
4. Since we know the equation of E^{\prime} explicitly, and we are looking for an N torsion point on E^{\prime}, satisfying the above equation, how will we find it?
Approach: Find a root of the N-th division polynomial on E^{\prime}, which by definition has as its roots the x-coordinates of the N-torsion points. Note that E^{\prime} is parametrized by (b, c), the parameters of E, and thus the N-th division polynomial has coefficients which are also parametrized by (b, c).
5 . We can factor the N-th division polynomial over $\mathbb{Q}_{N}(b, c)$, but this typically results in a product of irreducible factors of degree >1. To find a correct root, we need to determine the correct factor of the N-th division polynomial, and we also have to determine the smallest algebraic extension of $\mathbb{Q}_{N}(b, c)$ where such a root is defined.
Approach: We show that it is sufficient to adjoin a single N-th root of an algebraic expression in (b, c). More in detail, the central observation is that P^{\prime} is defined over $\mathbb{Q}_{N}(b, c, \sqrt[N]{\rho})$ for some $\rho \in \mathbb{Q}_{N}(b, c)$ and we prove that one can take $\rho=t_{N}(P,-P)$ where t_{N} denotes the Tate pairing.
6. Once we know the correct field extension, we can explicilty find a root of (a factor of) the division polynomial defined over this extension. This root gives the x-coordinate of P^{\prime} explicitly, and the y-coordinate follows easily by solving a degree 2 equation coming from the curve equation.
Approach: Use a standard root finding algorithm.
7. The fact that we only require one N th root explains the name "radical isogenies". By rewriting (E^{\prime}, P^{\prime}) again in Tate normal form with coefficients b^{\prime} and c^{\prime}, we are ready for another iteration. The formulae we derive in fact express b^{\prime} and c^{\prime} directly as elements of $\mathbb{Q}_{N}(b, c, \sqrt[N]{\rho})$, and can simply be applied as many times as required without the need to generate N-torsion points explicitly as one would do in the more classical approaches.
Approach: Move the point P^{\prime} to $(0,0)$ again and transform the curve into Tate normal form. This gives the new b^{\prime}, c^{\prime} which can be repeated indefinitely.

An important application is where we apply these formula for an elliptic curve over a finite field \mathbb{F}_{q}, with $\operatorname{gcd}(q-1, N)=1$. In this case, we immediately obtain that the radical $\sqrt[N]{\rho}$ is again defined over \mathbb{F}_{q}, since N th powering is a field automorphism in this case. This can be applied in the setting of CSIDH, since there we need to take a number of steps in one direction, i.e. a cyclic isogeny.

We will now proceed to go through each of these steps to derive explicit radical isogenies for the case $N=5$.

1 Step 1: The Tate normal form

We will be interested in elliptic curves E over K with a distinguished point $P \in E(K)$ of some finite order N. By translating this point to $(0,0)$ and requiring that the tangent line is horizontal, and with proper scaling, one can easily prove the following lemma.

Lemma 1. Let E be an elliptic curve over K and let $P \in E(K)$ be a point of order $N \geq 4$, then (E, P) is isomorphic to a unique pair of the form

$$
\begin{equation*}
E: y^{2}+(1-c) x y-b y=x^{3}-b x^{2}, \quad P=(0,0) \tag{4}
\end{equation*}
$$

with $b, c \in K$ and

$$
\Delta(b, c)=b^{3}\left(c^{4}-8 b c^{2}-3 c^{3}+16 b^{2}-20 b c+3 c^{2}+b-c\right) \neq 0
$$

Exercise 1 Prove the above lemma, i.e. that (b, c) are unique given that $P=$ $(0,0)$.

The resulting curve-point pair is said to be in Tate normal form.
Exercise 2 Using your favorite computer algebra package, show that on the Tate normal form, the first few scalar multiples of $P=(0,0)$ are given by simple expressions in b and c, e.g.

$$
2 P=(b, b c), 3 P=(c, b-c), \quad-P=(0, b),-2 P=(b, 0),-3 P=\left(c, c^{2}\right) .
$$

Using these multiples, for each $N \geq 4$ one can write down an irreducible polynomial $F_{N}(b, c) \in \mathbb{Z}[b, c]$ whose vanishing, along with the non-vanishing of $\Delta(b, c)$ and of $F_{m}(b, c)$ for $4 \leq m<N$, expresses that P has exact order N.

Exercise 3 Using the previous exercise, show that the first few values of F_{N} are given by $F_{4}(b, c)=c=0, F_{5}(b, c)=c-b=0$ and $F_{6}(b, c)=c^{2}+c-b=0$.

Alternatively, the polynomial $F_{N}(b, c)$ can be recovered as a factor of the constant term of the N-division polynomial (see Step 4 for their definition) of the curve (4), when considered over the rational function field $\mathbb{Q}(b, c)$. This is the approach taken in $[9, \S 2]$, to which we refer for more details.

Remark 2. Up to birational equivalence, $F_{N}(b, c)$ is a defining polynomial for the modular curve $X_{1}(N)$. See again [9] for more background.

Following the previous exercises, we now know that for $N=5$, we have the following Tate normal form:

$$
\begin{equation*}
E: y^{2}+(1-b) x y-b y=x^{3}-b x^{2}, \quad P=(0,0) \tag{5}
\end{equation*}
$$

as long as $b \neq 0$ nor a root of $b^{2}-11 b-1$.

2 Step 2: Isogenies and Vélu's formulae

Let E and E^{\prime} be elliptic curves over K. An isogeny $\varphi: E \rightarrow E^{\prime}$ is a non-constant morphism such that $\varphi\left(\mathcal{O}_{E}\right)=\mathcal{O}_{E^{\prime}}$, where $\mathcal{O}_{E}, \mathcal{O}_{E^{\prime}}$ denote the respective points at infinity. The degree of φ is its degree as a morphism and there always exists a dual isogeny $\hat{\varphi}: E^{\prime} \rightarrow E$ such that $\hat{\varphi} \circ \varphi=[\operatorname{deg}(\varphi)]$, where as usual [•] denotes scalar multiplication. The kernel of φ is a finite subgroup of E, more precisely its size is a divisor of $\operatorname{deg}(\varphi)$, where equality holds if and only if φ is separable (which is automatic if char $K \nmid \operatorname{deg}(\varphi)$). Conversely, given a finite subgroup $C \subset E$, there exists a unique ${ }^{1}$ separable isogeny φ having C as its kernel. Concrete formulae for this isogeny were given by Vélu:

Theorem 3. Let C be a finite subgroup of the elliptic curve

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

over K. Fix a partition $C=\left\{\mathcal{O}_{E}\right\} \cup C_{2} \cup C^{+} \cup C^{-}$, where C_{2} are the order 2 points of C, and C^{+}and C^{-}are such that for any $P \in C^{+}$it holds that $-P \in C^{-}$. Write $S=C^{+} \cup C_{2}$, and for $Q \in S$ define

$$
\begin{aligned}
g_{Q}^{x} & =3 x(Q)^{2}+2 a_{2} x(Q)+a_{4}-a_{1} y(Q) \\
g_{Q}^{y} & =-2 y(Q)-a_{1} x(Q)-a_{3}, \\
u_{Q} & =\left(g_{Q}^{y}\right)^{2}, \quad v_{Q}= \begin{cases}g_{Q}^{x} & \text { if } \quad 2 Q=\mathcal{O}_{E} \\
2 g_{Q}^{x}-a_{1} g_{Q}^{y} & \text { else }\end{cases} \\
v & =\sum_{Q \in S} v_{Q}, \quad w=\sum_{Q \in S}\left(u_{Q}+x(Q) v_{Q}\right) \\
A_{1} & =a_{1}, \quad A_{2}=a_{2}, \quad A_{3}=a_{3} \\
A_{4} & =a_{4}-5 v, \quad A_{6}=a_{6}-\left(a_{1}^{2}+4 a_{2}\right) v-7 w
\end{aligned}
$$

Then the separable isogeny φ with domain E and kernel C has codomain $E^{\prime}=$ E / C with Weierstrass equation

$$
\begin{equation*}
E^{\prime}: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6} \tag{6}
\end{equation*}
$$

over \bar{K}. Furthermore, for $P \in E$ we can compute the image of P as

$$
\begin{aligned}
& x(\varphi(P))=x(P)+\sum_{Q \in C \backslash\left\{\mathcal{O}_{E}\right\}}(x(P+Q)-x(Q)) \\
& y(\varphi(P))=y(P)+\sum_{Q \in C \backslash\left\{\mathcal{O}_{E}\right\}}(y(P+Q)-y(Q)) .
\end{aligned}
$$

Proof. See [10].

[^0]Exercise 4 Using your favorite computer algebra package, apply Vélu's formulae to E and P and compute an equation for E^{\prime}. You can for instance use the IsogenyFromKernel command in Magma for this where you first have to derive the kernel polynomial (which is easy given the multiples of P you computed before). If everything went correct, you should end up with a curve isomorphic to
$y^{2}+(-b+1) * x * y-b * y=x^{3}-b * x^{2}+\left(-5 * b^{3}-10 * b^{2}+5 * b\right) * x+\left(-b^{5}-10 * b^{4}+5 * b^{3}-15 * b^{2}+b\right)$

3 Step 3: finding a kernel generator on \boldsymbol{E}^{\prime}

Now that we have determined E^{\prime}, we need to find a point P^{\prime} on E^{\prime} such that the composition

$$
\begin{equation*}
E \rightarrow E^{\prime} \rightarrow E^{\prime} /\left\langle P^{\prime}\right\rangle \tag{7}
\end{equation*}
$$

is a cyclic isogeny of degree N^{2}. This simply means that the kernel of the composition has to be generated by a single N^{2}-torsion point on E (and not e.g. full N-torsion).

Exercise 5 Show that the point P^{\prime} has to satisfy

$$
\begin{equation*}
\hat{\varphi}\left(P^{\prime}\right)=\lambda P \text { for some } \lambda \in(\mathbb{Z} / N)^{*} \tag{8}
\end{equation*}
$$

with $\hat{\varphi}: E^{\prime} \rightarrow E$ the dual of φ.
In particular, there are $N \phi(N)$ such points, generating N distinct subgroups of E^{\prime}, where ϕ denotes Euler's totient function. The points corresponding to $\lambda=1$ will be called P-distinguished; they can be viewed as a set of canonical generators for these subgroups.

4 Step 4: Division polynomials

Let E / K be defined by $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$, and let $b_{2}=a_{1}^{2}+4 a_{2}$, $b_{4}=2 a_{4}+a_{1} a_{3}, b_{6}=a_{3}^{2}+4 a_{6}, b_{8}=a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}$. For all integers $N \geq 0$, the N-division polynomial is given by
$\Psi_{E, 0}=0, \quad \Psi_{E, 1}=1, \quad \Psi_{E, 2}=2 y+a_{1} x+a_{3}, \quad \Psi_{E, N}=t . \quad \prod \quad(x-x(Q))$,

$$
Q \in(E[N] \backslash E[2]) / \pm
$$

where $t=N$ if N is odd and $t=\frac{N}{2} \cdot \Psi_{E, 2}$ if N is even. By definition, we have that for any non-trivial $P \in E[N], \Psi_{E, N}(P)=0$. The division polynomials satisfy the following recurrence relation which allows them to be computed efficiently:

$$
\begin{aligned}
\Psi_{E, 3} & =3 x^{4}+b_{2} x^{3}+3 b_{4} x^{2}+3 b_{6} x+b_{8} \\
\frac{\Psi_{E, 4}}{\Psi_{E, 2}} & =2 x^{6}+b_{2} x^{5}+5 b_{4} x^{4}+10 b_{6} x^{3}+10 b_{8} x^{2}+\left(b_{2} b_{8}-b_{4} b_{6}\right) x+\left(b_{4} b_{8}-b_{6}^{2}\right) \\
\Psi_{E, 2 N+1} & =\Psi_{E, N+2} \Psi_{E, N}^{3}-\Psi_{E, N-1} \Psi_{E, N+1}^{3} \text { if } N \geq 2 \\
\Psi_{E, 2 N} & =\frac{\Psi_{E, N}}{\Psi_{E, 2}}\left(\Psi_{E, N+2} \Psi_{E, N-1}^{2}-\Psi_{E, N-2} \Psi_{E, N+1}^{2}\right) \text { if } N \geq 3 .
\end{aligned}
$$

Note that $\Psi_{E, 2}^{2}=4 x^{3}+\left(a_{1}^{2}+4 a_{2}\right) x^{2}+\left(2 a_{1} a_{3}+4 a_{4}\right) x+a_{3}^{2}+4 a_{6}$, i.e. a univariate polynomial in x.

If one is interested in points of exact order N (so not just in $E[N]$), then one can use the reduced N-division polynomial $\psi_{E, N}$ defined as

$$
\psi_{E, N}=\frac{\Psi_{E, N}}{\operatorname{lcm}_{d \mid N, d \neq N}\left\{\Psi_{E, d}\right\}}
$$

For all primes ℓ, we have that $\Psi_{E, \ell}=\psi_{E, \ell}$. Note that for $N>2$, the reduced N-division polynomial of an elliptic curve E is a univariate polynomial in x.

The multiplication by N-map can be expressed explicitly using division polynomials as follows [8, Exercise 3.6]:

$$
\begin{equation*}
[N] P=\left(\frac{\phi_{E, N}(P)}{\Psi_{E, N}(P)^{2}}, \frac{\omega_{E, N}(P)}{\Psi_{E, N}(P)^{3}}\right) \tag{9}
\end{equation*}
$$

with $\phi_{E, N}=x \Psi_{E, N}^{2}-\Psi_{E, N+1} \Psi_{E, N-1}$ and $\omega_{E, N}=\frac{1}{2 \Psi_{E, N}}\left(\Psi_{E, 2 N}-\Psi_{E, N}\left(a_{1} \phi_{E, N}+\right.\right.$ $\left.a_{3} \Psi_{E, N}^{2}\right)$).

Exercise 6 Using a computer algebra package, compute the 5-th division polynomial for the curve

$$
E: y^{2}+(1-c) x y-b y=x^{3}-b x^{2}
$$

What is the constant term of this polynomial? How does this related to F_{5} you have derived before?

Exercise 7 Using a computer algebra package, compute the 5-th division polynomial for the curve E^{\prime}. The answer is given in the appendix.

Exercise 8 Using a computer algebra package, compute the factorisation of the 5 -th division polynomial on the curve E^{\prime} as irreducible polynomials over the funciton field $\mathbb{Q}(b)$. Which degrees do you see? Can you relate one of the factors with the dual isogeny?

5 Step 5: Constructing the correct algebraic extension via the Tate pairing

Given an elliptic curve E / K and an integer $N \geq 2$, the Tate pairing is a bilinear map

$$
t_{N}: E(K)[N] \times E(K) / N E(K) \rightarrow K^{*} /\left(K^{*}\right)^{N}:\left(P_{1}, P_{2}\right) \mapsto t_{N}\left(P_{1}, P_{2}\right)
$$

which can be computed as follows. Consider a Miller function $f_{N, P_{1}}$, i.e., a function on E with divisor $N\left(P_{1}\right)-N\left(\mathcal{O}_{E}\right)$. Let D be a K-rational divisor on E that is linearly equivalent with $\left(P_{2}\right)-\left(\mathcal{O}_{E}\right)$ and whose support is disjoint from $\left\{P_{1}, \mathcal{O}_{E}\right\}$. Then $t_{N}\left(P_{1}, P_{2}\right)=f_{N, P_{1}}(D)$. If $P_{1} \neq P_{2}$ and the Miller function is
normalized, i.e., the leading coefficient of its expansion around \mathcal{O}_{E} with respect to the uniformizer x / y equals 1 (we are assuming that E is in Weierstrass form), then one can simply compute $t_{N}\left(P_{1}, P_{2}\right)$ as $f_{N, P_{1}}\left(P_{2}\right)$.

For certain instances of K, the Tate pairing is known to be non-degenerate, meaning that for each $P_{1} \in E(K)[N] \backslash\left\{\mathcal{O}_{E}\right\}$ there exists a $P_{2} \in E(K) / N E(K)$ such that $t_{N}\left(P_{1}, P_{2}\right) \neq 1$, and vice versa. Most notably, this is true if $K=\mathbb{F}_{q}$ is a finite field containing a primitive N th root of unity ζ_{N} [6], i.e., for which $N \mid q-1$.

Another important feature is that the Tate pairing is compatible with isogenies, in the following sense: if $\varphi: E \rightarrow E^{\prime}$ is an isogeny over K then the rule $t_{N}\left(\varphi\left(P_{1}\right), P_{2}^{\prime}\right)=t_{N}\left(P_{1}, \hat{\varphi}\left(P_{2}^{\prime}\right)\right)$ applies. For a proof of this compatibility we refer to [2, Thm. IX.9], which assumes $\zeta_{N} \in K$, but this condition can be discarded (it is not used in the proof).

Exercise 9 Show that the above implies that

$$
t_{N}\left(\varphi\left(P_{1}\right), \varphi\left(P_{2}\right)\right)=t_{N}\left(P_{1}, P_{2}\right)^{\operatorname{deg}(\varphi)}
$$

for all $P_{1} \in E(K)[N]$ and $P_{2} \in E(K) / N E(K)$.
Exercise 10 Using the fact that $\hat{\varphi}\left(P^{\prime}\right)=P$ and exploiting the compatibility of the Tate pairing with isogenies, show that the field of definition of P^{\prime} must contain $\sqrt[N]{t_{N}(P,-P)}$. Why do you think $-P$ was chosen and not just P ?

Exercise 11 Using a computer algebra package, compute a representant of the Tate pairing $t_{5}(P,-P)$ on E. In this case the result can simply be taken as b. Note the multiplying with any 5 -th power in $\mathbb{Q}_{N}(b, c)^{*}$ is an equally valid answer since the Tate pairing is only determined modulo 5 -th powers.

The above exercise shows that the field of definition of P^{\prime} contains at least the field $\mathbb{Q}_{N}(b, c, \sqrt[N]{\rho})$, but it does not directly imply that both are equal. Adjoining an N-th root is an instance of a simple radical extension.

Following [5], we say that a field extension $K \subset L$ is simple radical of degree $N \geq 2$ if there exists an $\alpha \in L$ such that (i) $L=K(\alpha)$, (ii) $\rho:=\alpha^{N} \in K$, and (iii) $x^{N}-\rho \in K[x]$ is irreducible. Property (iii) can be verified easily using the following theorem.

Theorem 4. Let K be a field, consider an integer $N \geq 2$, and let $\rho \in K^{*}$. Assume that for all primes $m \mid N$ we have $\rho \notin K^{m}$. If $4 \mid N$, assume moreover that $\rho \notin-4 K^{4}$. Then the polynomial $x^{N}-\rho \in K[x]$ is irreducible.

Proof. See [7, Thm. VI.9.1].
Although you have only shown an inclusion of fields, it is possible to show an equality as in the following theorem. For a proof we refer to the original paper [3].

Theorem 5. Let $P^{\prime} \in E^{\prime}$ be a point satisfying (3). Then the field extension $\mathbb{Q}_{N}(b, c) \subset \mathbb{Q}_{N}(b, c)\left(P^{\prime}\right)$, obtained by adjoining the coordinates of P^{\prime}, is simple radical of degree N. More precisely, $\mathbb{Q}_{N}(b, c)\left(P^{\prime}\right)=\mathbb{Q}_{N}(b, c)(\sqrt[N]{\rho})$ for an appropriately chosen N th root $\sqrt[N]{\rho}$ of $\rho=f_{N, P}(-P)$.
Remark 1. Our choice of radicand $\rho=f_{N, P}(-P)$ is somewhat arbitrary: any representant of $t_{N}(P, \mu P)$ for any $\mu \in(\mathbb{Z} / N)^{*}$ would have worked equally well, with the same proofs. This reflects the fact that scaling ρ by N th powers, or raising ρ to an exponent that is coprime with N, results in the same simple radical extension.

6 Step 6: finding the coordinates of P^{\prime}

Following Theorem 5 we know it is sufficient to consider the field extension $\mathbb{Q}_{N}(b, c)(\sqrt[N]{\rho})$ for an appropriately chosen N th root $\sqrt[N]{\rho}$ of $\rho=f_{N, P}(-P)$ to find the field of definition of P^{\prime}.

Exercise 12 Using a computer algebra package, find the coordinates of P^{\prime} on E^{\prime} by first finding its x-coordinate as a root of a well chosen factor of the 5 -th division polynomial on E^{\prime} over the field extension $\mathbb{Q}_{N}(b, c)(\sqrt[N]{b})$.

In particular, if you choose the factor

$$
\begin{array}{r}
z^{5}+10 b z^{4}+\left(-5 b^{3}-5 b^{2}+55 b\right) z^{3}+\left(-85 b^{4}-120 b^{3}-230 b^{2}+35 b\right) z^{2} \\
+\left(-5 b^{6}-310 b^{5}-770 b^{4}+325 b^{3}-95 b^{2}+10 b\right) z \\
-b^{8}+19 b^{7}-777 b^{6}+757 b^{5}-755 b^{4}-2 b^{3}-17 b^{2}+b
\end{array}
$$

you will end up with the x-coordinate of a P-distinguished point. If we denote $\omega=\sqrt[5]{b}$, then the result you should obtain is given by

$$
\begin{array}{r}
P^{\prime}:=\left[5 \omega^{4}+(b-3) \omega^{3}+(b+2) \omega^{2}+(2 b-1) \omega-2 b,\right. \\
\left.5 \omega^{4}+(b-3) \omega^{3}+\left(b^{2}-10 b+1\right) \omega^{2}+\left(-b^{2}+13 b\right) \omega-b^{2}-11 b\right]
\end{array}
$$

Given the coordinates of a P-distinguished point P^{\prime}, all other P-distinguished points are found by varying the choice of $\sqrt[N]{\rho}$:
Lemma 6. Let $\lambda \in(\mathbb{Z} / N)^{*}$ and consider formulae expressing the coordinates of a point P^{\prime} such that $\hat{\varphi}\left(P^{\prime}\right)=\lambda P$. Then, by varying the choice of the N th root $\sqrt[N]{\rho}$, i.e., by scaling it with ζ_{N}^{i} for $i=0,1, \ldots, N-1$, these formulae compute the coordinates of all points P^{\prime} for which $\hat{\varphi}\left(P^{\prime}\right)=\lambda P$.

7 Step 7: transforming back to Tate normal form

Now that you have found the coordinates of the point P^{\prime}, you are almost done in deriving the radical isogeny formulae for $N=5$. The final step is simply to transform the curve equation for E^{\prime} back into a Tate normal form, the coefficients of which are the radical isogeny formulae.

Exercise 13 Using the result of the previous exercise, transform the curve E^{\prime} into Tate normal form

$$
E^{\prime}: y^{2}+\left(1-b^{\prime}\right) x y-b^{\prime} y=x^{3}-b^{\prime} x^{2}, \quad P^{\prime}=(0,0)
$$

One possible answer is given by

$$
b^{\prime}=\omega \frac{\omega^{4}+3 \omega^{3}+4 \omega^{2}+2 \omega+1}{\omega^{4}-2 \omega^{3}+4 \omega^{2}-3 \omega+1}
$$

8 Other examples

Below you can find some other examples that were computed in a similar method as you did for $N=5$. Note that the table only contains a representative of the radicand. The corresponding formulae expressing b^{\prime}, c^{\prime} as a function of $b, c, \omega=$ $\sqrt[N]{\rho}$ become too complex to nicely display here. All formulae for $N=2, \ldots, 13$ can be found online at https://github.com/KULeuven-COSIC/Radical-Isogenies
$\left.\begin{array}{|c|c|c|}\hline N & \text { Polynomial relation } F_{N}(b, c)=0 & \text { Radicand } \rho=f_{N, P}(-P) \\ \hline \hline 4 & c=0 & -b \\ \hline 5 & c-b=0 & b \\ \hline 6 & c^{2}+c-b=0 & -b^{2} / c \\ \hline 7 & c^{3}+c b-b^{2}=0 & b^{3} / c^{2} \\ \hline 8 & c^{2} b-c^{2}+3 c b-2 b^{2}=0 & -b^{3} /(b-c) \\ \hline 9 & c^{5}+c^{4}-c^{3} b+c^{3}-3 c^{2} b+3 c b^{2}-b^{3}=0 & b^{3} c^{2} /(b-c)^{2} \\ \hline 10 & c^{5}+c^{4} b+3 c^{3} b-3 c^{2} b^{2} \\ +c^{2} b-2 c b^{2}+b^{3}=0\end{array}\right]-b^{3} c /\left(c^{2}+c-b\right)$.

Table 1: Relations $F_{N}(b, c)=0$ and radicands ρ for small $N \geq 4$

A similar reasoning can be made for $N>5$, but a direct factorization of the reduced N-division polynomial of E^{\prime} over $\mathbb{Q}_{N}(b, c)(\sqrt[N]{\rho})$ quickly becomes
unwieldy, for several reasons: the coefficients of E^{\prime} become more involved, the degree of $\psi_{E^{\prime}, N}$ grows quadratically, and both ρ and the base field $\mathbb{Q}_{N}(b, c)$ become increasingly complicated, see Table 1 . For instance, from $N=7$ onwards it is no longer possible to eliminate one of the variables b, c using the relation $F_{N}(b, c)=0$. As long as the modular curve $X_{1}(N)$ has genus 0 , it is possible to get around this by using a different parametrization, but for $N=11$ and $N \geq 13$ this is no longer the case.

An approach that already works much better is to use number fields, i.e. assign a large enough integer value to b, construct the number field defined by $F_{N}(b, c)=0$ and the degree N extension by adjoining $\sqrt[N]{\rho}$. The root of $\psi_{E^{\prime}, N}(x)$ is an expression in c and $\sqrt[N]{\rho}$ with rational coefficients. We know that each such coefficient is a rational function in b, so if b is large enough, this function can be found using lattice reduction. The most effective method is similar to the previous method, but uses p-adic fields instead of number fields. Again we need to choose a "large enough" value for b and a large enough precision with which we represent the p-adic field, to be able to reconstruct the rational function in b. We followed this approach for $N=13$, since Magma struggles to find the formulae using direct root finding.

9 Appendix

The 5-th division polynomial on E^{\prime}
$5 z^{\wedge} 12+\left(5 b^{\wedge} 2-30 b+5\right) z^{\wedge} 11+\left(b^{\wedge} 4-322 b^{\wedge} 3-551 b^{\wedge} 2+267 b+1\right) z^{\wedge} 10+\left(-480 b^{\wedge} 5-3390 b^{\wedge} 4+3030 b^{\wedge} 3-\right.$ $6335 \mathrm{~b} \wedge 2+470 \mathrm{~b}) z^{\wedge} 9+\left(-285 \mathrm{~b} \wedge 7-3765 b^{\wedge} 6+8265 b^{\wedge} 5-20355 b^{\wedge} 4+35910 b^{\wedge} 3-8040 b \wedge 2+285 b\right) z^{\wedge} 8+(-90 b \wedge 9$ $\left.870 b^{\wedge} 8+27060 b^{\wedge} 7+20850 b^{\wedge} 6+62910 b^{\wedge} 5-72060 b^{\wedge} 4+20220 b^{\wedge} 3-3150 b^{\wedge} 2+90 b\right) z^{\wedge} 7+\left(-15 b^{\wedge} 11+405 b^{\wedge} 10+\right.$ 42195 b ^9 $+128310 \mathrm{~b} \wedge 8+266625 \mathrm{~b} \wedge 7-228315 \mathrm{~b} \wedge 6-293925 \mathrm{~b} \wedge 5+172200 \mathrm{~b} \wedge 4-28125 \mathrm{~b}$ ^3 $-225 \mathrm{~b} \wedge 2+15 \mathrm{~b}) \mathrm{z}^{\wedge} 6+$ $\left(-\mathrm{b} \wedge 13+289 \mathrm{~b}^{\wedge} 12+27558 \mathrm{~b} \wedge 11+199127 \mathrm{~b} \wedge 10+511270 \mathrm{~b}^{\wedge} 9-280879 \mathrm{~b} \wedge 8+477816 \mathrm{~b}^{\wedge} 7+1713587 \mathrm{~b} \wedge 6-1578322 \mathrm{~b} \wedge 5\right.$ $\left.418067 \mathrm{~b} \wedge 4-28098 \mathrm{~b}^{\wedge} 3+199 \mathrm{~b}^{\wedge} 2+\mathrm{b}\right) \mathrm{z}^{\wedge} 5+\left(65 \mathrm{~b} \wedge 14+9915 \mathrm{~b} \wedge 13+112205 \mathrm{~b}^{\wedge} 12+669245 \mathrm{~b}^{\wedge} 11-352475 \mathrm{~b} \wedge 10\right.$ $\left.538435 b^{\wedge} 9+6828385 \mathrm{~b} \wedge-8948605 b^{\wedge} 7+4751805 \mathrm{~b} \wedge 6-2247405 b^{\wedge} 5+252920 b^{\wedge} 4-11135 b^{\wedge} 3+60 b^{\wedge} 2\right) z^{\wedge} 4+\left(5 b^{\wedge} 16\right.$ $+2060 b^{\wedge} 15+33060 b^{\wedge} 14+331020 b^{\wedge} 13+334630 b^{\wedge} 12-730470 b^{\wedge} 11+8809165 b^{\wedge} 10-14385960 b^{\wedge} 9+14356630 b^{\wedge} 8-$ $\left.6234590 \mathrm{~b}^{\wedge} 7+5800370 \mathrm{~b}^{\wedge} 6-1060370 \mathrm{~b}^{\wedge} 5+75310 \mathrm{~b}^{\wedge} 4-2310 \mathrm{~b}^{\wedge} 3+5 \mathrm{~b}^{\wedge} 2\right) \mathrm{z}^{\wedge} 3+\left(250 \mathrm{~b}^{\wedge} 17+4615 \mathrm{~b}^{\wedge} 16+94755 \mathrm{~b}^{\wedge} 15+\right.$
$13915 \mathrm{~b}^{\wedge} 14-32065 \mathrm{~b}^{\wedge} 13+7027425 \mathrm{~b}^{\wedge} 12-19811600 \mathrm{~b}^{\wedge} 11-400635 \mathrm{~b}^{\wedge} 10-11570105 \mathrm{~b}^{\wedge} 9+10204120 \mathrm{~b}^{\wedge} 8-7585240 \mathrm{~b}^{\wedge} 7$
 $4484205 b^{\wedge} 14-6832915 b^{\wedge} 13-20657360 b^{\wedge} 12+7663700 b^{\wedge} 11-31325575 b^{\wedge} 10-7101825 b^{\wedge} 9+9341380 b^{\wedge} 8-1331150 b^{\wedge} 7$ $\left.+385260 b^{\wedge}-28745 b^{\wedge} 5+675 b^{\wedge} 4-20 b^{\wedge} 3\right) z+b^{\wedge} 21-9 b^{\wedge} 20+520 b^{\wedge} 19+8515 b^{\wedge} 18-59980 b^{\wedge} 17+160118 b^{\wedge} 16+$ 2573598 b ^15-13562315b^14 + 15424734b^13-34652931b^12 + $15685472 b^{\wedge} 11-13788354 b$ ^10 $-8269780 b \wedge 9+$ 266981 b ^8 - 133579b^7 + $28334 \mathrm{~b}^{\wedge} 6-935 \mathrm{~b}$ ^5 $+11 \mathrm{~b} \wedge 4-\mathrm{b}^{\wedge} 3$

Its corresponding factorisation in irreducible polynomials over $\mathbb{Q}(b)$:
$\left\langle z^{\wedge} 2+\left(b^{\wedge} 2-b+1\right) z+1 / 5 b^{\wedge} 4+3 / 5 b^{\wedge} 3-26 / 5 b^{\wedge} 2-8 / 5 b+1 / 5,1>\right.$
$z^{\wedge}-15 b z^{\wedge} 4+\left(-55 b^{\wedge} 3+45 b^{\wedge} 2+5 b\right) z^{\wedge} 3+\left(-35 b^{\wedge} 5-65 b^{\wedge} 4+65 b^{\wedge} 3-100 b^{\wedge} 2\right) z^{\wedge} 2+\left(-10 b^{\wedge} 7-25 b^{\wedge} 6-\right.$
$z^{\wedge} 5+10 b z^{\wedge} 4+\left(-5 b^{\wedge} 3-5 b^{\wedge} 2+55 b\right) z^{\wedge} 3+\left(-85 b^{\wedge} 4-120 b^{\wedge} 3-230 b^{\wedge} 2+35 b\right) z^{\wedge} 2+\left(-5 b^{\wedge} 6-310 b^{\wedge} 5-\right.$
$\left.770 \mathrm{~b}^{\wedge} 4+325 \mathrm{~b}^{\wedge} 3-95 \mathrm{~b}^{\wedge} 2+10 \mathrm{~b}\right) \mathrm{z}-\mathrm{b} \wedge 8+19 \mathrm{~b}^{\wedge} 7-777 \mathrm{~b}^{\wedge} 6+757 \mathrm{~b}^{\wedge} 5-755 \mathrm{~b}^{\wedge} 4-2 \mathrm{~b}^{\wedge} 3-17 \mathrm{~b}^{\wedge} 2+\mathrm{b}, 1>$

References

[1] Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation of isogenies of large prime degree. In ANTS-XIV, volume 4 of Open Book Series, pages 39-55. Mathematical Sciences Publishers, 2020.
[2] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, editors. Advances in elliptic curve cryptography, volume 317 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005.
[3] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. Radical isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - Part II, volume 12492 of Lecture Notes in Computer Science, pages 493519. Springer, 2020.
[4] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An efficient post-quantum commutative group action. In Asiacrypt 2018 (3), volume 11274 of Lecture Notes in Computer Science, pages 395427. Springer, 2018.
[5] Keith Conrad. Simple radical extensions. Expository paper. https://kconrad. math.uconn.edu/blurbs/galoistheory/simpleradical.pdf.
[6] Florian Hess. A note on the Tate pairing of curves over finite fields. Archiv der Mathematik, 82:28-32, 2004.
[7] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. SpringerVerlag, New York, third edition, 2002.
[8] Joseph H Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, second edition, 2009.
[9] Marco Streng. Generators of the group of modular units for $\Gamma_{1}(N)$ over the rationals. Cornell University, arXiv:1503.08127v2, 2019. https://arxiv.org/ abs/1503.08127v2.
[10] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de l'Académie des Sciences, Série I, 273:238-241, 1971.

[^0]: ${ }^{1}$ Up to post-composition with an isomorphism.

