
ADVANCED SIDH PROTOCOLS

DAVID JAO

1. Key Compression

In these notes we present the idea of key compression and the mathematics behind it. Key compression
is a technique used in SIDH to reduce the size of public keys. It was introduced in Azarderakhsh et al. [1]
and further refined by Costello et al. [9], Zanon et al. [3], Naehrig and Renes [2], and Pereira et al. [4].

We recall the basic operation of SIDH. In what follows, we use the notation 〈g1, g2, . . .〉 to denote the
subgroup generated by g1, g2, . . . in an abelian group. Two parties Alice and Bob agree on a set of public
parameters consisting of:

• A prime p = 2e3f − 1, balanced so that 2e ≈ 3f ,
• A trace 0 supersingular elliptic curve E/Fp2 : y2 = x3 +Ax2 + x, in Montgomery form,
• Points Pa, Qa ∈ E[2e] which generate E[2e] as an abelian group (so that E[2e] = 〈Pa, Qa〉),
• Points Pb, Qb ∈ E[3f ] which generate E[3f ] as an abelian group (so that E[3f ] = 〈Pb, Qb〉).

Under the above conditions, Pa, Qa, Pb, Qb are all defined over Fp2 . To perform key exchange, Alice:

• Selects a secret key na ← Z/2eZ,
• Computes the unique (up to isomorphism) isogeny φa : E → Ea having kernel 〈Pa + naQa〉,
• Constructs the public key (Aa, φa(Pb), φa(Qb)), where Aa is the Montgomery coefficient of the curve
Ea : y2 = x3 +Aax

2 + x computed previously, and sends it to Bob.

Similarly, Bob selects a secret key nb ← Z/3fZ, constructs the public key (Ab, φb(Pa), φb(Qa)), and sends it
to Alice. We now consider the two isogenies

φ′a : Eb → E′b

φ′b : Ea → E′a

wherein

kerφ′a = 〈φb(Pa) + naφb(Qa)〉 = 〈φb(Pa + naQa)〉
kerφ′b = 〈φa(Pb) + nbφa(Qb)〉 = 〈φa(Pb + nbQb)〉

and observe that

kerφ′b ◦ φa = 〈Pa + naQA, Pb + nbQb〉 = kerφ′a ◦ φb,
so that E′a

∼= E′b. Note that Alice (and only Alice) has the information needed to compute φ′a, and Bob
(and only Bob) has the information needed to compute φ′b, which explains our choice of subscripts for
these isogenies. Normalizing curves so that E′a = E′b, we now have φ′b ◦ φa = φ′a ◦ φb, so we thus obtain a
commutative diagram

E Ea

Eb Eab

φb

φa

φ′b

φ′a

where Eab denotes the common curve E′a = E′b. We remark that if Vélu’s formulas [5] are used to construct
the above isogenies, then the resulting curves automatically satisfy E′a = E′b, because Vélu’s formulas preserve
the invariant differential. Regardless of whether E′a = E′b, we always have j(E′a) = j(E′b) = j(Eab), and this
common value can be used to derive a shared secret for Alice and Bob (for example, by hashing it).

Date: July 30, 2021.

1



In the above description, a public key (such as Alice’s) consists of the data (Aa, φa(Pb), φa(Qb)) for

Aa ∈ Fp2

φa(Pb) ∈ Ea(Fp2)

φa(Qb) ∈ Ea(Fp2)

Letting k denote dlog2 pe, we see that Aa, φa(Pb), and φa(Qb) require 2k, 4k, and 4k bits respectively
in their binary representations. Standard elliptic curve point compression methods (e.g. omitting the y-
coordinate) can reduce the storage requirements for φa(Pb) and φa(Qb) to 2k bits each, leading to a
key size of 6k bits in total. In practice, for efficiency reasons, a SIKE [6] key is actually represented as
(x(φa(Pb)), x(φa(Qb)), x(φa(Pb −Qb)), but the storage cost of this representation is still about 6k bits.

The basic idea behind key compression is that each of the values Aa, φa(Pb), and φa(Qb) actually has
much less than 2k bits of information-theoretic entropy, so by finding alternative representations of these
values, we can reduce the storage and transmission cost of a public key. In fact, each of Aa, φa(Pb), and
φa(Qb) could in principle be represented using only k bits:

• Aa defines an isomorphism class of supersingular elliptic curves in characteristic p, and the number
of such isomorphism classes of curves is almost exactly p+1

12 ≈ O(p).

• φa(Pb) and φa(Qb) are elements of E[3f ] ∼= (Z/3fZ)2, which has cardinality 32f . Given p = 2e3f −1,
and assuming 2e ≈ 3f , we have 32f ≈ O(p).

In reality, techniques for key compression have focused exclusively on finding smaller and more efficiently
computable representations of φa(Pb) and φa(Qb), since it is not known at this time how to represent a
supersingular isomorphism class over Fp2 efficiently using anything non-negligibly fewer than 2k bits. (The
latter problem has been an open problem for at least several decades, and any progress in that direction
would be welcome. Note that it is not necessary to get all the way down to the theoretical minimum of k
bits; even a small amount of partial progress would be an improvement.)

2. Prelude: Optimal strategies

A large portion of the literature on key compression is concerned with finding mathematical algorithms to
speed up implementation of compression techniques. As a warm-up for this topic, and also because optimal
strategies are an important part of SIDH implementation that to the best of my knowledge has not yet been
covered in this school, we devote some attention to the topic of optimal strategies in this section. Note that
optimal strategies are also used in key compression (cf. Section 5.2). Most of this material is taken from the
SIKE spec [6].

The core computational task in SIDH can be phrased as follows: Given

• p = 2e3f − 1,
• A trace 0 supersingular elliptic curve E/Fp2 ,
• A point S of order dividing `e, where ` is some small integer, either 2 (for Alice) or 3 (for Bob),
• A (possibly empty) list of points P1, P2, . . . ∈ E,

find the codomain E/〈S〉 of an isogeny ψ : E → E/〈S〉, along with the values ψ(P1), ψ(P2), . . . if required.
Vélu’s formulas do indeed produce the rational equations for an isogeny E → E/〈S〉, but applying the
formulas directly to S yields an enormous cost of over `e operations. Recent breakthroughs in isogeny
computation [8] improve this cost to O(`e/2), but this cost is still too large to allow for direct computation.
Therefore, instead of using Vélu’s formulas directly, we compose a sequence of isogenies

E E1 = E/〈`e−1S〉 E2 = E1/〈ψ1(`e−2S)〉 E3 = E2/〈ψ2(ψ1(`e−3S))〉 . . .
ψ1 ψ2 ψ3

where each isogeny ψi has degree ` (or less, in the case where S does not have full order); the composition
ψe ◦ ψe−1 ◦ · · · ◦ ψ2 ◦ ψ1 is then equal to the desired isogeny ψ : E → E/〈S〉, while being much easier to
compute. Algorithm 1 depicts this method in pseudocode.

This approach, though polynomial-time, is relatively inefficient in practice. The most expensive part is
the computation of the point [`e−i]S in step 4. Indeed, each such computation requires (up to) e− 1 scalar
multiplications by `, and the computation is repeated e times, for a total of O(e2) elementary operations.

2



Algorithm 1 Naive isogeny computation

Given: p,E, S, (P1, P2, . . .)
1: (x1, x2, . . .)← (P1, P2, . . .)
2: E0 ← E
3: for i = 1 to e do
4: compute ψi : Ei−1 → E′ having kernel 〈`e−iS〉
5: Ei ← E′

6: S ← ψi(S)
7: (x1, x2, . . .)← (ψi(x1), ψi(x2), . . .)
8: return Ee, (x1, x2, . . .)

In optimized implementations, following [7], it is recommended to replace Algorithm 1 by a recursive
decomposition requiring only O(e log e) elementary multiplications, and a similar number of evaluations of
`-isogenies. We call such a decomposition a computational strategy, and we describe it by a full binary tree
on e− 1 nodes1. If we draw such trees so that all nodes lie within a triangular region of a hexagonal lattice,
with all leaves on one border, then the path length of the tree is proportional to the computational effort
required by the strategy. See Figure 1 for an example, and [7, §4] for a more formal definition.

Figure 1. Three computational strategies of size e− 1 = n. The simple approach used in
Algorithm 1 corresponds to the leftmost strategy.

In practice, we represent any full binary tree on e−1 nodes in the following way: associate to any internal
node the number of leaves to its right, then walk the tree in depth-first left-first order and output the labels
as they are encountered. See Figure 2 for an example.

3

2

1 1
2

1

Linearization: (3, 2, 1, 1, 2, 1)

Figure 2. Linear representation of a strategy on 6 nodes.

Note that the length of the linearlization is one less than the number of leaves in the tree. Given any full
binary tree represented linearly as a list (s1, s2, . . . , st−1), the computation in Algorithm 1 can be replaced
by the recursive procedure of Algorithm 2.

Exercise 1. Download Craig Costello’s SAGE implementation of SIDH (https://github.com/microsoft/
SIKE-challenges), which by default uses Algorithm 1, and modify it to perform “SIKEp434”2 (the default
parameter choice) using Algorithm 2, and using the following strategies given in the SIKE specification [6]:

• S4 = [48, 28, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 13, 7,
4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 21, 12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1,
1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1]

1Recall a full binary tree on n nodes is a binary tree with exactly n nodes of degree 2 and n + 1 nodes (leaves) of degree 0.
2Note that the name SIKEp434 is a misnomer in this setting, since the script actually performs SIDH, not SIKE.

3

https://github.com/microsoft/SIKE-challenges
https://github.com/microsoft/SIKE-challenges


Algorithm 2 Optimized isogeny computation

Given: p,E, S, (P1, P2, . . .), (s1, s2, . . . , st−1)
1: if t = 1 (i.e. the list is empty) then
2: compute an `-isogeny ψ : E → E′ of kernel 〈S〉
3: return (E′, (φ(P1), φ(P2), . . .))
4: n← s1
5: L← (s2, . . . , st−n)
6: R← (st−n+1, . . . , st−1)
7: T ← `nS
8: (E, (U,P1, P2, . . .))← Recurse on input (p,E, T, (S, P1, P2, . . .), L)
9: (E, (P1, P2, . . .))← Recurse on input (p,E, U, (P1, P2, . . .), R)

10: return (E, (P1, P2, . . .))

• S3 = [66, 33, 17, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1,
2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 32, 16, 8,
4, 3, 1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 2, 1, 1, 2, 1,
1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1]

valid for ` = 4 and ` = 3 respectively. Note that ` = 4 is obviously not a prime, but the methods described
here still work in that setting; in the specific case of SIKEp434, we can simply express the prime p in the
form p = 41083137 − 1 = 22163137 − 1 depending on if we want ` = 4 or ` = 2. Nevertheless, for simplicity,
you may want to do the ` = 3 case first.

Time how long the original implementation takes to execute, and how long your own implementation with
optimal strategies takes.

3. Torsion basis representations

Key compression is based on the observation that the points φa(Pb) and φa(Qb) in Alice’s public key lie in
Ea[3f ] (and similarly Bob’s public key points lie in Eb[2

e]). Given a point P ∈ Ea[3f ] and a fixed generating
set {R1, R2} such that Ea[3f ] = 〈R1, R2〉, there exist integers αP and βP such that P = αRR1 + βRR2

and 0 ≤ αP , βP < 3f . Therefore, provided that both parties can agree upon the same values of R1 and
R2, the point P can be stored and communicated in the form (αP , βP ), at a cost of 2 · log2(3f ) ≈ k bits,
where k denotes dlog2 pe as before. To go back from (αP , βP ) to P is easy, provided that R1 and R2 can be
determined; simply set P ← αPR1 + βPR2. To go in the other direction involves not only determining R1

and R2, but also the task of computing αP and βP .
The initial paper on key compression [1] uses the following naive algorithm. Letting h denote the cofactor

of P (so that h = 2e if P has order 3f , and vice-versa), we produce R1 and R2 as follows:

1. Choose a pseudorandom point R ∈ E(Fp2).
2. Set R1 ← hR.
3. We check whether R1 has the correct order, by computing 3f−1R1 (for Alice) or 2e−1R1 (for Bob).

If the result of the computation is not the identity, continue; otherwise return to step 1.
4. Repeat steps 1-3 to produce a second point R2 of the correct order.
5. Compute the Weil pairing e(R1, R2), and check whether it has the correct order as in step 3. If it

has the correct order, then output (R1, R2); otherwise, return to step 1. (See also Exercise 2.)

Since both Alice and Bob need to derive the same values of R1 and R2 in order for key compression to work,
the sequence of pseudorandom points sampled in step 1 needs to be seeded from a seed value that depends
only on Ea. How exactly to do this is left as an exercise for the reader (cf. Exercise 3).

Once we have produced a generating set {R1, R2}, we need an algorithm which takes in an input point
P ∈ Ea[3f ] for Alice (or P ∈ Eb[2e] for Bob) and returns integers αP , βP such that P = αPR1 +βPR2. This
problem is similar to the discrete log problem in a group, in that we are given a generating set for the group
(which in our case has size 2, in contrast to the size 1 generating set typically seen in discrete log), and we
have to find which linear combination of generators equals a given element. In principle, one could solve

4



this problem using methods similar to those for discrete log (e.g. baby-step giant-step). In [1], an alternative
approach based on the Weil pairing is used. Recall that the Weil pairing satisfies the following properties:

• Bilinearity:
– e(P1 + P2, Q) = e(P1, Q) · e(P2, Q)
– e(P,Q1 +Q2) = e(P,Q1) · e(P,Q2)
– e(P,Q)α = e(αP,Q) = e(P, αQ)

• Anti-symmetry:
– e(P,Q) = e(Q,P )−1

– e(P, P ) = 1
• Non-degeneracy:

– ∀ P, (∀ Q, e(P,Q) = 1) =⇒ P = O
Using these properties, we have

e(R1, P ) = e(R1, αPR1 + βPR2) = e(R1, R1)αP · e(R1, R2)βP = e(R1, R2)βP

e(R2, P ) = e(R2, αPR1 + βPR2) = e(R2, R1)αP · e(R2, R2)βP = e(R2, R1)αP = e(R1, R2)−αP

Hence one can compute αP and βP as follows:

1. Set g ← e(R1, R2)
2. Set hα ← e(R2, P )
3. Set hβ ← e(R1, P )
4. Set αP = −DLOG(g, hα)
5. Set βP = DLOG(g, hβ)
6. Output (αP , βP )

Normally, discrete logarithms in elliptic curves and finite fields are hard, but in this case, since the points
in question have order 2e or 3f , the discrete log values in steps 4 and 5 can be obtained efficiently using the
Pohlig-Hellman algorithm.

Exercise 2. Let R1, R2 ∈ E[`e], for ` prime. Show that the Weil pairing value e(R1, R2) has order `e if and
only if E[`e] = 〈R1, R2〉.

Exercise 3. Using https://github.com/microsoft/SIKE-challenges (as in Exercise 1), implement the
naive algorithm described in this section. Use your implementation to compress and decompress Alice and
Bob’s SIDH public keys. Time how long your implementation takes to run. Notes:

• SAGE has Pohlig-Hellman built in: given elements g and h in a group, h.log(g) yields DLOG(g, h).
• To compute Weil pairings in SAGE, use P.weil pairing(Q,n), where n is the order of P and Q.
• Beware: E.lift x in SAGE does not always return the same output when called on the same input.

4. Entangled basis generation

In the case of 2e-torsion points, it is possible to compute generating sets for E[2e] more quickly using
special algorithms which directly produce pairs of points (R1, R2) such that E[2e] = 〈R1, R2〉, without the
need for any order or pairing computations. A generating set produced in this manner is called an entangled
basis [3]. In this section, we focus on the 2e case. Finding analogous algorithms for the 3f case remains an
open problem.

A preliminary refinement of the naive algorithm is given in [9]. The key observation is that, given a curve
E : y2 = x3 + Ax2 + x, if we write the curve equation in the form y2 = x(x− γ)(x− δ) for γ, δ ∈ Fp2 , then
a point R ∈ E(Fp2) lies in 2E(Fp2) if and only if xR, xR − γ, and xR − δ are all squares in Fp2 [10, §1.4,
Theorem 4.1]. Hence, if xR is non-square, then this is sufficient (though not necessary) to guarantee that
R /∈ 2E, which in turn implies that 3fR must have order exactly 2e. This method allows us to produce
candidate 2e-torsion points with the assurance that the resulting points will have order exactly 2e, so that
testing for the order is unnecessary. Since all elements of Fp are square in Fp2 , it is easy to generate lots of
non-squares xR by taking a single non-square and multiplying it by elements of Fp. Using this method, it is
still necessary to test for whether x3R +Ax2R + xR is square, as well as whether e(R1, R2) has full order. We
note that testing for whether or not an element in Fp2 is a square is relatively easy:

5

https://github.com/microsoft/SIKE-challenges


Exercise 4. Let p ≡ 3 (mod 4). Let a + bi ∈ Fp2 , where i =
√
−1. Show that a + bi is a square in Fp2 if

and only if a2 + b2 is a square in Fp.

The full entangled basis generation algorithm, given in [3], relies on the following theorem:

Theorem 5 ([3]). Suppose A 6= 0. Given E/Fp2 : y2 = x3 + Ax2 + x, let t ∈ Fp2 , and suppose t2 /∈ Fp,
P ∈ E(Fp2), xP = −A/(1 + t2) and xP is not a square in Fp2 . Then

xQ = −xP −A

Q = (xQ,
√
x3Q +Ax2Q + xQ)

defines a point Q ∈ E(Fp2) such that E[2e] = 〈3fP, 3fQ〉.

Theorem 5 leads to a simple algorithm for entangled basis generation: choose suitable values of t ∈ Fp2
at random until xP = −A/(1 + t2) is non-square and x3P +Ax2P + xP is square; then compute P and Q and
output (3fP, 3fQ). With additional effort, one can produce a faster method as follows.

1. Pre-computation:
(a) Set u = 1 + i. (Note that u ∈ Fp2 \ Fp and u2 ∈ Fp2 \ Fp.)
(b) Compute (r, 1/(1 + (ur)2)) for various values of r (e.g. r = 1, 2, . . . , 100).

• If v ← 1/(1 + (ur)2) is a non-square in Fp2 , add (r, v) to table T1.
• If v ← 1/(1 + (ur)2) is a square in Fp2 , add (r, v) to table T2.

2. If A is a square in Fp2 , set T ← T1; otherwise set T ← T2.
3. For each entry (r, v) from T :

(a) Set x← −A · v. (Note: x is guaranteed to be a non-square.)
(b) Set z ← x3 +Ax2 + x.
(c) If z is a square in Fp2 :

(i) Set y ←
√
z.

(ii) Set P = (x, y).
(iii) Set Q = (−x−A, ury).
(iv) Return (P,Q).

The return values P and Q are not themselves 2e-torsion points, but they satisfy the property that E[2e] =
〈3fP, 3fQ〉. The pre-computation in step 1 is independent of A, and can be performed once and re-used for
all inputs A. The result in Exercise 4 can be used to test for whether v, A, and z are squares.

Exercise 6. Using https://github.com/microsoft/SIKE-challenges (as in Exercise 1), implement the
faster entangled basis generation method above. Time how long your implementation takes to run.

5. Additional topics

5.1. Reverse basis decomposition. Recall that key compression requires computing the values of the
coefficients αP , βP , αQ, βQ such that

φa(Pb) = αPR1 + βPR2

φa(Qb) = αQR1 + βQR2

The method of Section 3 requires computing the five pairing values

g0 = e(R1, R2)

g1 = e(R1, φa(Pb)) = gβP

0

g2 = e(R1, φa(Qb)) = g
βQ

0

g3 = e(R2, φa(Pb)) = g−αP
0

g4 = e(R2, φa(Qb)) = g
−αQ

0

from which αP , βP , αQ, βQ can be obtained using discrete logarithms. An alternative approach is to observe
that {φa(Pb), φa(Qb} also generates Ea[3f ] (because {Pb, Qb} generates E[3f ], and the isogeny φa has degree

6

https://github.com/microsoft/SIKE-challenges


Algorithm 3 Pohlig-Hellman discrete logarithms

Given: g, h ∈ G such that ord(g) = `e and h = gd

1: s← g`
e−1

2: d← 0
3: r0 ← h
4: for k = 0 to e− 1 do
5: vk ← r`

e−1−k

k

6: find dk ∈ {0, . . . , `− 1} such that vk = sdk

7: d← d+ dk`
k

8: rk+1 ← rk · g−`
kdk

9: return d

2e, so as a map it is injective on 3f -torsion). Hence we can write

R1 = = γPφa(Pb) + γQφa(Qb)

R2 = = δPφa(Pb) + δQφa(Qb)

where [
αp βp
αQ βQ

]
=

[
γP γQ
δP δQ

]−1
and we can compute the five pairing values

h0 = e(φa(Pb), φa(Qb))

h1 = e(φa(Pb), R1) = h
γQ
0

h2 = e(φa(Pb), R2) = h
δQ
0

h3 = e(φa(Qb), R1) = h−γP0

h4 = e(φa(Qb), R2) = h−δP0

Using discrete logarithms, we compute γP , γQ, δP , δQ, and invert the matrix to obtain αP , βP , αQ, βQ. The
advantage of this approach is that the value of h0 does not actually depend on φa, and hence it can be
pre-computed:

h0 = e(φa(Pb), φa(Qb)) = e(φ̂a ◦ φa(Pb), Qb) = e(2ePb, Qb) = e(Pb, Qb)
2e

wherein we have made use of the equivariance property of the Weil pairing: e(P, φ(Q)) = e(φ̂(P ), Q), where

φ̂ denotes the dual isogeny of φ [11, III.8.2].
Many more optimizations of this portion of the computation are possible, and these optimizations can be

combined with entangled basis generation in a compatible way. We refer the interested reader to [2–4,9] for
further details.

5.2. Optimal strategies for Pohlig-Hellman. A basic implementation of Pohlig-Hellman might be some-
thing along the lines of Algorithm 3. The astute reader may notice that Algorithm 3 bears a strong similarity
to Algorithm 1. Indeed, as Shoup [12, Ch. 11] observed (long before the invention of SIDH), one can speed
up Pohlig-Hellman using optimal strategy traversal trees. One possible approach, adapted from [12, §11.2.3],
is given in Algorithm 4.

Exercise 7. Implement Algorithms 3 and 4 for SIKEp434. Test Algorithm 4 using the following SIKEp434

parameter sets:

• ` = 2, e = 216, strategy = S4 from Exercise 1.
• ` = 3, e = 137, strategy = S3 from Exercise 1.
• ` = 16, e = 54, strategy = [19, 13, 8, 5, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 2, 1, 1,

1, 1, 1, 1, 1, 1, 1, 6, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1] from the SIKE spec [6].

Compare the speed of your implementations to each other (and to SAGE’s built-in log() function!).
7



Algorithm 4 Optimized Pohlig-Hellman

Given: g, h, e, (s1, s2, . . . , st−1)
1: if t = 1 (i.e. the list is empty) then
2: return d ∈ {0, . . . , `− 1} such that h = gd

3: n← s1
4: L← (s2, . . . , st−n)
5: R← (st−n+1, . . . , st−1)

6: u← Recurse on input (g`
e−n

, h`
e−n

, n,R)
7: v ← Recurse on input (g`

n

, h/gu, e− n,L)
8: return u+ `n · v

References

[1] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi, Key compression for isogeny-

based cryptosystems, Asia Public Key Cryptography—AsiaPKC 2016, pp. 1–10.
[2] Michael Naehrig and Joost Renes, Dual isogenies and their applications to public-key compression for isogeny-based cryp-

tography, Advances in cryptology—Asiacrypt 2019, Lecture Notes in Comput. Sci., vol. 11922, Springer, Cham, pp. 243–272.

[3] Gustavo H. M. Zanon, Marcos A. Simplicio Jr., Geovandro C. C. F. Pereira, Javad Doliskani, and Paulo S. L. M. Barreto,
Faster key compression for isogeny-based cryptosystems, IEEE Trans. Comput. 68 (2019), no. 5, 688–701.

[4] Geovandro Pereira, Javad Doliskani, and David Jao, x-only point addition formula and faster compressed SIKE, J. Cryp-

tographic Engineering 11 (2021), no. 1, 57–69.
[5] Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A238–A241.

[6] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir

Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukharev, and David Urbanik, Supersingular Isogeny Key Encapsulation, NIST post-quantum cryptography

standardization process, 2017. https://sike.org/.
[7] Luca De Feo, David Jao, and Jérôme Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve

isogenies, J. Math. Cryptol. 8 (2014), no. 3, 209–247.

[8] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith, Faster computation of isogenies of large prime
degree, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 4,

Math. Sci. Publ., Berkeley, CA, 2020, pp. 39–55.

[9] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik, Efficient compression of SIDH
public keys, Advances in cryptology—EUROCRYPT 2017. Part I, Lecture Notes in Comput. Sci., vol. 10210, Springer,

Cham, 2017, pp. 679–706.

[10] Dale Husemöller, Elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 111, Springer-Verlag, New York, 2004.
With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen.

[11] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer,

Dordrecht, 2009.
[12] Victor Shoup, A computational introduction to number theory and algebra, 2nd ed., Cambridge University Press, Cam-

bridge, 2009.

8

https://sike.org/

	1. Key Compression
	2. Prelude: Optimal strategies
	3. Torsion basis representations
	4. Entangled basis generation
	5. Additional topics
	5.1. Reverse basis decomposition
	5.2. Optimal strategies for Pohlig-Hellman

	References

